Histopathological and Immunohistochemical Analysis of Renal Cell Carcinomas At A Tertiary Care Hospital In Kashmir.

Dr Zarkah Nabi1, Dr Hilal Abudullah1, Dr Wani Zahid2, Dr Shuaeb Bhat3
1MD Pathology, Senior Resident Department of Pathology GMC Anantnag Kashmir.
2MD Internal Medicine, Sr SKIMS MCH Bemina
3Assistant Professor Department of Pathology GMC Anantnag Kashmir

*Corresponding Author:
Dr Wani Zahid Hussain
MD Internal Medicine, Sr SKIMS MCH Bemina

Type of Publication: Original Research Paper
Conflicts of Interest: Nil

Abstract

Objective: To study the histopathological and immunohistochemical features of Renal cell carcinoma (RCC) subtypes.

Method: A total of 62 cases of RCCs were studied prospectively at our centre, SKIMS Soura Kashmir. These included small biopsy and specimen samples. These tumours were analysed histopathologically and subtyped into Clear cell RCC, Papillary cell RCC, Chromophobe RCC and Sarcomatoid RCC. Immunohistochemical staining of these subtypes was done with CD 10, Vimentin, CK7, CD117 & P504s antibodies and positivity determined.

Results: This study focussed on the Renal cell carcinoma sub types. On histopathology most of the cases were Clear cell type followed by the papillary RCC, Chromophobe RCC and Sarcomatoid RCC. The mean age was approximately around 40 years and most of the tumors were left sided, majority were in the middle pole. On staining CD10 was positive in 80% of Clear cell RCC, 75% of Papillary RCC and 33% of Chromophobe RCC. Vimentin positivity was seen in 58% of Clear cell RCC & 62% of Papillary RCC. CK7 staining was positive in all Chromophobe RCC, 6% of clear cell RCC & 50% of papillary RCC. CD117 positivity was observed in all Chromophobe RCC, 4% of Clear cell RCC and 13% of Papillary RCC. P504s was seen positive in 62% of Papillary cell RCC & 4% of Clear cell RCC.

Conclusions: This histopathological study showed that major subtype of RCC diagnosed at our centre is Clear cell RCC followed by Papillary RCC, Chromophobe RCC and Sarcomatoid RCC. The ImmunoHistoChemical markers, CD 10 & Vimentin are the first line markers for diagnosis of these two subtypes. CD10 & Vimentin being more specific for Clear cell & Papillary cell RCC as compared to CK7 & CD117 who are more specific for Chromophobe RCC.

Keywords: Renal Cell Carcinomas(RCC), Clear cell RCC(CRCC), Papillary RCC(PRCC), Chromophobe RCC(CHRCC), Sarcomatoid RCC, ImmunoHistoChemistry, CD 10, Vimentin, CK7, CD117, P504s.

Introduction

Renal cell carcinoma is one of the most common & lethal renal cancers. Its origin is considered to be epithelial, originating from the cells of the renal tubules and are adenocarcinomas. It also known as Grawitz tumor or hypernephroma as based on the concept of their origin from the adrenal rests in the kidney1. Renal cell carcinoma (RCC) accounts for 2% of adult malignancies and 90-95% of neoplasms of the kidney2.
RCC is classically divided into 5 main histologic subtypes: Clear cell, Papillary, Chromophobe, Collecting duct and unclassified RCC. Out of this Clear cell & Papillary are the most common types, comprising 70-80% & 14-17% RCCs, respectively. Collecting duct (Bellini duct) carcinoma is the rarest type of RCC (<1%). Unclassified RCCs are those which do not fit into any of these 4 subtypes morphologically or cyogenetically. Clear cell carcinomas(CRCC) histologically have a clear or granular cytoplasm and are mostly sporadic. Papillary carcinomas(PRCC) have a papillary growth pattern, multifocal in origin and are associated with dialysis linked cystic disease. Chromophobe RCCs(CHRCC) have an eosinophilic cytoplasm, distinct cell membranes and a halo around the nucleus. Collecting duct carcinomas arise from the collecting duct in the medulla and are nests of malignant cells surrounded by a fibrotic stroma.

The classic presentation of RCCs consists of hematuria, pain and flank mass. However many patients lack all of these and present with systemic symptoms of weight loss, abdominal pain, and anorexia. These often invade the renal vein and grow in the vessel lumen and may extend through the inferior vena cava into the right side of the heart. Renal cell carcinoma occasionally causes paraneoplastic endocrine syndromes including pseudo hyperparathyroidism, erythrocytosis, hypertension, and gynecomastia. RCC rarely occurs before 40 yrs of age, but its incidence increases from 4th decade to a peak in the sixth and seventh decades.

Newer classification of renal cell tumours was proposed by WHO in 2016 based on cytoplasmic features, anatomic location of tumours and the alterations at molecular level. For grading and prognosis the most widely used system was proposed by Fuhrman and colleagues. It includes nuclear grades based on nuclear size, irregularity of the nuclear membrane and nucleolar prominence.

Immunohistochemistry is an important tool in our setup to differentiate between different subtypes of primary renal epithelial neoplasms and confirm the histopathological diagnosis. A number of antibodies like CD10, Vimentin, CK7, CD117 & P504s are useful in determining the renal origin and in the differential diagnosis. In this study we aimed to identify the IHC panel which would correlate to different subtype of RCCs determined on histopathological diagnosis.

MATERIALS AND METHODS

This study was conducted in the Department of Pathology at Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar. It was a prospective study of 2 years from September 2018 to September 2020. The study was conducted after taking permission from SKIMS Ethical Committee.

Complete clinical details, examination findings, and radiological investigations of all patients were studied. Both excised specimen and renal core biopsies were included. The excised tissue specimens were processed routinely and stained with Haematoxylin and Eosin. Only malignant tumours of kidney were taken up for immunohistochemistry and benign renal tumours were excluded from our study. Microscopic sections of all cases were used to select proper blocks for tissue microassay. Immunohistochemistry were performed on representative areas as identified on H&E slides. Tumor cells were taken positive only when the correct staining pattern was achieved. CD10 stains cell membrane, Vimentin stains Cytoplasm, CK7 gives membranous & cytoplasmic staining CD117 stains cell membrane & P504s gives cytoplasmic staining. Immunoreactivity was taken positive only when greater than 10% cells got stained.

RESULTS

Out of a total of 62 biopsies received, 51 (82.3%) were large specimen while as only 11 (17.7%) were small biopsies. When relation of age with biopsy type was assessed, majority i.e. 4 (36.4%) of small biopsies belonged to patients aged 45-54 years while as majority i.e. 20 (39.2%) of large specimen belonged to patients aged 35-44 years. The mean age in small biopsy group was 44.8±11.52 years and that in large biopsy the mean age was 42.7±13.99 years as shown in figure 1.

Majority of small and large biopsy i.e. 9 (81.8%) and 36 (70.6%) belonged to males while as 2 (18.2%) small biopsies and 15 (29.4%) large biopsies belonged to females. Out of a total of 11 small biopsies, 8 (72.7%) were clear cell type RCC, 2 (18.2%) were papillary type RCC and 1 (9.1%) was chromophobe RCC. Against a total of 51 large specimen, 42 (82.4%) were clear cell type RCC, 6 (11.8%) were papillary type RCC, 2 (3.9%) were chromophobe RCC and 1...
(2%) was sarcomatoid RCC on histopathology as shown in Table 1. Tumor location was right sided in 11 (21.6%) and left sided in 40 (78.4%). Out of the total of 51 tumors, majority i.e. 22 (43.1%) were in middle pole followed by 17 (33.3%) in upper pole and 12 (23.5%) in lower pole. The size of majority of tumors i.e. 31 (60.8%) was 5-19cm, 16 (31.4%) tumors sized <5cm while as >10cm was the size of 4 (7.8%) tumors. There were 29 (56.9%) greyish white color, 18 (35.3%) were yellow brown and 4 (7.8%) were greyish brown. 31 (60.8%) tumors were hard in consistency, 12 (23.5%) were firm and 8(15.7%) were soft in consistency. As per Fuhrman’s grade, 28 (54.9%) had Grade II, 17 (33.3%) had grade III, 4 (7.8%) had grade I while as 2 (3.9%) had grade IV as shown in Figure 2. There were 24 (47.1%) with stage II tumours, 18 (35.3%) with stage I, 6 (11.8%) with stage III and 3 (5.9%) with stage IV.

On immunohistochemistry CD10 was positive (Fig 3) in 80% of Clear cell RCC , 75% of Papillary RCC and 33% of Chromophobe RCC. Vimentin positivity(Fig 4) was seen in 58 % Clear cell RCC & 62% of Papillary RCC. CK7 staining (Fig5) was positive in 100% of Chromophobe RCC , 6% of clear cell RCC& 50% of papillary RCC. CD117 positivity was observed in all Chromophobe RCC & negative in 94% of clear cell RCC. CD117 positivity was observed in all Chromophobe RCC & negative in 96% Clear cell RCC and 87% Papillary RCC. P504s was seen positive in 62% of Papillary cell RCC but negative in 96 % of Clear cell RCC. This pattern of IHC staining for categorizing subtypes of RCC is well documented 

CONCLUSION

We recommended using Vimentin, CK7, and CD10 as IHC markers in accordance to our results to confirm the RCC subtypes. Our study suggests specificity of P504s to confirm PRCC, CD117 for CHRCC & CD10 for CRCC. However according to the recent WHO classification of the renal cell carcinoma subtypes, genetic derangement is most appropriate to determine the RCC subtype. So cytogenetic means should be the gold standard. But such methods are very costly and unavailable at our pathological laboratory. In our set up Immunohistochemical studies are still an appropriate technique for accurate categorization of the most cases of the renal cell carcinoma.

REFERENCES:


Figure 1: Age distribution of study patients

Figure 2: Distribution of study patients as per Fuhrman's Grade
Figure 3: Photomicrograph showing positivity for CD 10

Figure 4: Photomicrograph showing positivity for Vimentin
Table 1: Distribution of study patients as per histological type

<table>
<thead>
<tr>
<th>Histological Type</th>
<th>Small Biopsy</th>
<th></th>
<th>Large Biopsy</th>
<th></th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>% age</td>
<td>No.</td>
<td>% age</td>
<td>No.</td>
<td>% age</td>
</tr>
<tr>
<td>Clear cell type RCC</td>
<td>8</td>
<td>72.7</td>
<td>42</td>
<td>82.4</td>
<td>50</td>
<td>80.6</td>
</tr>
<tr>
<td>Papilary type RCC</td>
<td>2</td>
<td>18.2</td>
<td>6</td>
<td>11.8</td>
<td>8</td>
<td>12.9</td>
</tr>
<tr>
<td>Chromophobe RCC</td>
<td>1</td>
<td>9.1</td>
<td>2</td>
<td>3.9</td>
<td>3</td>
<td>4.8</td>
</tr>
<tr>
<td>Sarcomatid RCC</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
<td>2.0</td>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>100</td>
<td>51</td>
<td>100</td>
<td>62</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 5: Photomicrograph showing positivity for CK-7
<table>
<thead>
<tr>
<th>RCC Subtype</th>
<th>Politivity</th>
<th>CD 10</th>
<th>Vimentin</th>
<th>CK7</th>
<th>CD117</th>
<th>P504s</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRCC</td>
<td>Positive</td>
<td>40</td>
<td>29</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10</td>
<td>21</td>
<td>47</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>PRCC</td>
<td>Positive</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>CHRCC</td>
<td>Positive</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>