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ABSTRACT

This work particularly contributes towards medical image processing. Medical images are generated by several
imaging modalities. Such images are interpreted and analysed by some medical professional. Based on the
source and imaging modalities the professional may be a radiologist (in case of X-rays, CT, MRI imaging
modalities) or a pathologist (microscopic images pertaining to a cell or tissue sample). However, a large number
of images are generated that is needed to be analysed with limited number of human resource. Automated
computer application or Computer Aided Diagnosis (CAD) systems can provide adequate analysis that can
multiply and maximize the limited human resource for correct analysis. Effective, timely and accurate analysis
contribute to correct inference that is vital for diagnosis of disease. This paper contributes to this domain of

CAD system for Malaria detection from digitized images of PBS (thin smear) slides.
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INTRODUCTION

Malaria disease is common in tropical countries
across the globe. Most of the infection is less harmful
but some of the infections may result in severe
condition and mortality. Malaria is often called “King
of Diseases”. Normally this disease takes pandemic
proportions during the rainy seasons, where an
abundance of stagnant water gives rise to a
population of mosquitoes. The disease persists and
finds its way to expression and growth among human
being.

Economically backward people are most affected by
the disease and they have less access to the
advancement in preventive medicine and treatment
tools. Economists view the interaction of malaria and
poverty with the perspective of delineation of
economic growth of both individual and nation.
Microeconomic analysis of household income and
indirect/direct impact of malaria can be up to 10% of
annual income of the household. Macroeconomics in

the national level can reduce per capita Gross
Domestic Product (GDP) by 50% compared to
countries not affected by malaria. The economics
were reviewed by economists Sachs and Maloney,
who concludes that “where malaria prospers most,
human societies have prospered least” [1].

World Health Organization (WHQO) manages this
disease across the world. They collect data on
Malaria and reports annually as ‘World Malaria
Report’. The recently published ‘World Malaria
Report 2017°, compiles data accumulated in the year
2016 where 216 million cases were reported
worldwide (Cl 95%) [2]. The number of fatalities
reported was estimated to be 4,45,000 deaths globally
[2]. Incidence of P. falciparum infection was
prevalent in Africa whereas P. vivax infection was in
majority in rest of the world [2]. In India, however,
P. falciparum infections constitute 66% of the
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reported cases while 34% cases are that of P. vivax
[2].

WHO endorses the view that any case showing
malaria like symptoms should be confirmed by
laboratory techniques like microscopic examination
or Rapid Diagnostic Test kits (RDT) before
medication is given [3]. Light microscopy plays an
important role for detecting Parasitaemia due to the
low cost [3]. Among all the available methods for
detection of malaria light microscopy is most
predominantly used for Parasitaemia determination
[4]. This process was invented during the late 19th
century remains the “gold standard” for malaria
diagnosis [5-6]. However, use of microscopic
diagnosis requires special expertise that is obtained
through rigorous training of technicians [6-7].

The smear slides are stained with dye so that it
enhances the nucleus region and there is greater
contrast for visual identification of White Blood Cell
(WBC) and parasite infected Red Blood Cell (RBC).
This is, however, a very tedious, time taking process,
is subjective and impossible to recreate and there
exists “inter and intra-observer variability” in the
detection [7-8]. While this requires trained skilled
technicians [9], it is a time taking process [10] and
accuracy is dependent on the quality of technical
expertise and his commitment to the detection
process [11], are a major disadvantage of this
analysis method. Laboratory diagnosis using
microscope achieves 90% accuracy compared with
expert microscopy, however, the accuracy level
diminishes in the field analysis [10]. Quality of slide
preparation, degradation of the slide with time [12]
and low agreement rates between experts [13] are an
additional disadvantage of microscopic analysis.

There are several alternatives to laboratory diagnosis
of Malaria by Peripheral Blood Smear (PBS) with
light microscopy. Related methods like Quantitative
Buffy Coat Method (QBF), use of Rapid Diagnostic
Test (RDT) Kits, Serological tests are available.
RDTs are use often for screening purpose. Other
expensive molecular methods like Polymerase Chain
Reaction (PCR), Loop Mediated Isothermal
Amplification (LAMP), Flow Cytometry Method
Assay, Automated blood Cell Counters (ACC), DNA
Micro Array and Mass Spectrometry (MS) are rarely
used. Digital Microscopy has gained popularity over
light microscopy. The digital microscopes have
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advanced optics, LED lights, high resolution digital
camera for recording the observations, firmware and
software for managing the data obtained. Whole
Slide Scanners have also been utilized for
pathological observations. The use of digitized image
captured from PBS slides using digital microscopes
(Virtual Microscopy) or whole slide scanners have
introduced a new concept of ‘Digital Pathology’. The
digital images can be archived in the Cloud or
transmitted through the network for analysis by
expert. This has also provided opportunities for the
development of automated image analysis software
or Computer Aided Diagnosis (CAD) system.

Computerized Image processing or Digital image
processing is often referred to as Computer Vision
and found its initial application in the study of
satellite imagery captured by spy satellites to track
enemy movement. Though initial applications of
Computer Vision and Pattern Analysis was in defense
related research, but now this has found applications
in every walks of life. Digital image processing has
wide range of application ranging from industrial
manufacturing, Geographical Information System
(GIS) and also in Medical imaging. Digital image
processing and automated analysis of images have
significantly contributed to the betterment of several
processes that affect human lives.

The contribution is aimed at developing automated
CAD applications for Pathology. Malaria disease
identification is an age-old problem that significantly
affect a huge population. The work presents an
approach for automated analysis of Malaria infected
slides.

The complexity of the detection problem involves
differentiating normal RBC from infected ones. Some
mature parasite forms mimics of the WBC in
morphology and hence segregating the parasites from
the WBC is vital for Parasitaemia estimation
(enumerations of infected cells against the normal
cells). This research work is focused on detection of
parasites within RBC, determining the Parasitaemia
and analysing the morphological forms of infection
of two species P. vivax and P. falciparum, that
mostly predominant in India. The Figure 1 below
shows the blood cell types and different
morphological forms of parasites of interest.
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1. Review of Related Research Work

The illumination of images and colour density may
vary intra/inter dataset. For execution of an
algorithm, it often requires some correction to
maintain parity of conditions in the images. Das et al.
[14-16] adapted the ‘Gray World assumption’ for
illumination correction. To achieve noise elimination,
Median filtering has been adapted by most authors
like, Ruberto et al. [17], Ross et al. [18], Anggraini et
al [19], Das et al. [16], Rosado et al. [20], Predanan
et al [21], Bahendwar et al. [22] and Nugroho et al.
[23]. Authors Dave et al. [24] and Savkare et al. [25]
have used a combination of Median filtering with
Laplacian filter for noise removal along with
enhancement of the edge region. Adaptive and local
histogram equalisation method is used by Sio et al
[26-27], Gaussian filter is employed by Arco et al. al.
[28] for noise reduction. The authors Reni et al. [29]
performed contrast enhancement on grayscale image
by finding optimum weights for R, G and B channels.
Automated cell clump removal is vital for accurate
enumeration. The red blood cell de-clumping is
performed by a rule based binary splitting algorithm
as proposed by Kumar et al. [30] is also employed by
Sio et al. [26] to de-clump red blood cells for
accurate enumeration result. Preedanan et al. [21,31]
and Bairagi et al. [32] used Watershed transform
method for clump splitting (with Euclidian distance
transform).

Segmentation is the key for successful parasite
detection. The authors Ruberto et al [17], Tek et al.
[14], Das et al. [16], Ahirwar et al. [28], Prasad et al
[33] and Dave et al. [24-25] and used Mathematical
Morphology for determining the size of red blood
cells/segmentation of foreground. The authors Reni et
al. [29] utilized a modified ‘Morphological Closing’
operation for artefact removal and preservation of
maximum foreground information. Image
binarization using Otsu thresholding for image
segmentation was performed by authors Das et al.
[16], Ahirwar et al. [28], Anggraini et al. [19].
Mehrjou [34], Rosado et al. [20] and Savkare et al.
[25]. Dave et al. [24] have used grayscale histogram
with Kurtosis (to determine uni/bimodal histogram)
and then performed Otsu thresholding. The authors
Bairagi et al. [32] have use Otsu thresholding on
RGB and HSV colour channels. Preedanan et al. [21]
have adopted adaptive histogram thresholding for
segmentation. The authors, Savkare et al [25],
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Mehrjou [34], in their research citations have
implemented Watershed transform with distance
transform for segmentation of red blood cells.
Watershed transform method is done by author Das
et al [16] [35] and Khan et al. [36]. Authors Damahe
et al. [37] used Zack thresholding method on the ‘V’
or ‘value’ component of HSV image for
segmentation. Authors Purwar et al [38] have used
Active Contour model for segmentation of red blood
cells.

Some researchers [17] determined the presence of
parasite by using two distinct methods. Author Halim
et al. [39], performed parasite detection using a
Variance based approach and separately a Colour
Based Co-occurrence Matrix based matching
technique. Authors Tek et al [15] used RGB
histogram and probability density function to
determine parasite region. Toha & Ngah [40],
calculated a threshold value to identify parasite
region followed by calculating the Euclidean distance
to differentiate between each parasite cluster.
Makkapati et al [41], segmented chromatin regions
by means of Otsu threshold method using HSV
colour model and computed distance of red blood cell
region and obtained chromatin regions to
differentiate from nucleus of white blood cells.
Damahe et al. [37] and Dave et al. [24], converted the
image to HSV colour space, while Damahe et al.
[18,37,42] performed thresholding on the °S
component histogram’, Dave et al. [24] utilized the
‘Hue channel’ for parasite detection. Fang et al [43],
used Quaternion Fourier Transform (QFT) to obtain
the amplitude and phase spectrum of image and the
inverse Quaternion Fourier Transform to locate
parasite region. Elter et al. [44], used green and blue
channels for obtaining threshold value, followed by
morphological Top-Hat to determine parasite region.
The authors Nugroho et al. [23] used K-NN classifier
with ‘S component’ in HSV colour space for
segmentation. Khan et al [45] performed clustering
on the ‘b’ component of the image converted to Lab
colour space for obtaining parasite region.

Some researchers [15, 22,23] work with 20 classes to
identify four species and four stage for each species
and normal cases using KNN classifier. Ross et al.
[18], used geometric and texture features with Back
Propagation Neural Network for classification of
parasite infected red blood cell. Different histogram
features with Support Vector Machine (SVM) and
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multilayer perceptron for classification used by other
researchers [31].

Khan et al. [36], used different textural features with
Feed-forward Back Propagation Neural Network for
parasite identification. Anggraini et al [19], used
Multilayer perceptron model for classification. The
authors Das et al [16], Ghosh et al [42], used
Bayesian and SVM classifier for detecting parasite
region. Das et al [35], used texture based features
with  Multivariate  Logistical Regression  for
identifying parasite in thin smear images.

Authors Savkare et al [21,25, 32] implemented SVM
(with colour, texture and shape features) for
classification of parasite and normal red blood.
Colour and Texture features with SVM classifier is
used by Rosado et al. [20,46].

2. Dataset

The glass slide of a thin smear of blood contains a
spread of vascular tissue of an individual probably
containing Malaria infection.  For the purpose of
species and life-cycle stage classification 1000x
magnification is the standard. Figure 2 shows sample
images of Dataset #1 and Dataset #2. Table 1 shows
the image specifications and dataset details.

Dataset #1

The database that was acquired from MaMic [46-47]
(which is a publicly available database) pertains to
snapshots taken from a whole thin blood smear slide
scanned at 100X resolution of P. falciparum
infection. The P.vivax dataset is not available
publicly and was provided on request.

Dataset #2

The dataset is acquired from the Pathology
Department of SSKM Hospital, Kolkata under the
supervision of Dr. D. Ckakraborty. The slides were
prepared by the Ronald Ross Malaria Centre within
the hospital campus.

Dataset #3

A combined dataset of the images obtained from
MaMic [47] and SSKM Hospital, Kolkata.

Methodology

At the very onset, an algorithm was developed using
unsupervised technique for identification of red blood
cell infection. Thin blood smear images were
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acquired from the public MaMic database [46-47].
Images were acquired at 40X magnification and
25watts illumination. Once acquired, image noise
was corrected. In total a set of 250 images were used
for the study. Of the 250 images acquired, 125
images consisted of blood infected with malarial
parasite, while the other images consisted of blood
smears taken from individuals not infected with
malaria.

Images (of size: 1387 x 932 pixel?) acquired from the
MaMic database consisted of salt, pepper noise. To
correct salt pepper noise 2D Median filtering with 3
by 3 window was performed. Once noise corrected,
the RGB ‘JPEG’ images were converted to Lab
Colour Space image. Based on the a and b
components, unsupervised K-means clustering was
performed to segment out Red Blood Cells from the
Geimsa stained thin blood smear images. The
methodology has been duly represented in Figure
3(a) and 3(b) respectively.

To overcome the shortcoming of the proposed
methodology, digitized thin blood smears were used
to predict the presence of malaria parasite using
unsupervised and rule based methods. A dataset was
developed from the MaMic database. Cochrane’s
sample size estimation was used to decide on sample
size.  Clumps are identified based on the third
quartile bound of the area distribution of the
foreground components. Clumps marked out were
de-clumped automatically using 2 phase modified
watershed algorithm. Based on the values in YC,C,
colour space, the image was recoloured and pixel
position matching was performed to detect malaria
parasite in Figure. 4.

The segmentation algorithm results in the formation
of two clusters, namely, the RBC cluster (consisting
of normal RBC cell & (infected RBCs incl.
artefacts)) and the WBC cluster (consisting broadly
of normal WBC and infection). Based on the
infection identification algorithms devised, an
intersection of the color value based rule
methodology and Lab color based unsupervised
clustering algorithm, the infected RBC are identified
and thereby segregated from normal RBC cells. Parts
of the RBC cell (or pixels) that were marked as

infection by only one of the algorithm are treated as
probable infection. The intersection parts were

marked as infection regions. So in particular, the
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RBC cell cluster was further subdivided into 2 sub-
clusters, cluster of the normal RBC cells and the
infected RBC cells. The probably infected cells were
returned to the cluster of normal RBC cells. Based on
the annotations provided by a registered medical
practitioner the performance of the hybrid algorithm
for detection of infected RBC was evaluated

The WBC cluster formed as a part of the
aforementioned segmentation process consists of
normal WBC cell, infection, artefacts and certain
RBC cell outliers that are particularly bigger in size
(based on Tukey’s Hinges) that RBC and have taken
a stain color similar to the WBC cell cluster. Features
were calculated for each connected component in the
predominantly White Blood cell cluster. The features
used to segregate a White Blood Cell from Infection
and an outlier Red Blood cell can be divided into 2
broad groups: namely clinical features and features
used by other computer science researchers for
identification of malaria parasite infection.
For either of the two infection clusters, the feature
space dimensionality is reduced to a set of 50 features
using conditional mutual information maximization
algorithm. Now the 50 feature strong dataset of 1410
MaMic database images, 1320 images from the
acquired dataset and mixed dataset consisting of 2730
images were all subjected to 10 folds’ cross
validation to prevent over fitting of the data model
developed.

Classification for either infected cluster is performed
in three different ways to test the performance among

singular classifiers and also compare their
performance to ensemble classifiers. Again
performance of differently created ensemble

classifiers was also compared. The classification
strategy that was used has been duly represented in
Figure 5.

Results

In accordance with the proposed methodology, the
algorithm can particularly be classified into four
essential blocks namely, image pre-processing along
with ROI extraction, De-clumping of cluster (red
blood cell cluster, mixed red blood cell with white
blood cell clusters) along with red blood cell
After 2-stage de-clumping red blood cells were
segregated from white using a threshold value.
Tukey’s upper hinge was used as a threshold to
segregate red from white blood cells, namely, Table
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Segregation of WBC from other connected
components in the cluster under consideration.

So for species and stage classification two images
have been used, infected WBC cluster and the
infected RBC cluster. For the RBC infected cluster
semi-supervised lab color based clustering was
performed for pronounced ring identification within
the RBC cell. The Table 3 represents the clinical and
other texture features that have been used for species
and stage classification of RBC cluster based
infection. Features as recorded in Table 2 have been
used for classification of species and stage
classification for WBC cluster. The groups in case of
White Blood Cell infected cluster are Vivax Schizont
and Vivax Gametocyte (Male, Female) [Two class
problem]. For the RBC infected cluster the stages and
specie groups are Vivax Ring, Vivax Tropozoite,
Falciparum Tropozoite, Falciparum Ring, Falciparum
Schizont, Falciparum Gametocyte (Male, Female).

enumeration, Malaria parasite detection and parasite
stage classification.

For the first section, the foreground identification
accuracy achieved by 3-Means Clustering was found
to be 92.19 % across all images in the database
against the modified Zack’s thresholding [48] which
recorded only a value of 63.75 % for the dataset at
hand. Again, these values were obtained on images
for which illumination was not corrected (Table 4).

The second integral section can further be divided
into two serially dependent blocks, namely, de-
clumping and red blood cell enumeration. Modified
watershed based methodology was used for
automatic de-clumping of red blood cell clusters as
also mixed red blood cell-white blood cell clusters. In
coherence with the proposed methodology, it was
integral to evaluate the performance of different
statistical metrics to clearly mark out the clumps (i.e.
red blood cell clumps or mixed white and red blood
cell clumps) from the individual cells in the digitized
thin blood smear image. Table 5 provides the
performance of the different statistical metrics used
for differentiating clumps from solitary cell particles
(for MaMic database).

6 represents the performance metric for red blood cell
segregation from white blood cells. While the first
section forms the basis of the algorithm as a whole,
the second block is precursor to Parasitaemia
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estimation that is worked on in the third block of the
research design. The third block is aimed to identify

For Parasitaemia estimation the algorithm identifies a
white blood cell based on the presence of nucleus
(represented in green) and area value along with
other texture features as highlighted in Table 2, is
marked as normal, the other problem area/s present
within a red blood cell or as standalone are retained
for further investigation.

As per the proposed model, the performance of the
hybrid algorithm towards detection of infected RBC
at cellular level was recorded (Accuracy 0.9962,
Sensitivity 0.9963, and Specificity-0.9949. In case of
the WBC Cluster, a 4 —NN classifier was used to
separate out white blood cell, infection, artefact (i.e.
clustered platelets) and outlier red blood cell. Figure
7 and 8 provide some of the GLCM texture feature
values that were found to be statistically significant
Conclusions

The contribution of the work is particularly two fold.
In terms of application software, it stands as a tool to
assist medical practitioners at effective detection of
malaria parasite as also specie and stage
classification. As opposed to other toolkits having
similar functionality, this particular tool investigates
parasites at cellular level which is much preferred by
medical practitioners with significantly adding to the
computational overhead. In perspective of computer
science, it has been a long standing debate with
regard to the predictive power of the classifiers. This
paper adds on to the vast domain by putting forth a
comparative study of single and ensemble classifiers
(both inter and intra) using the same set of
normalized filter features in perspective of the
computer science domain.

As a result of 10 fold cross-validation, the final or
best performance that has been achieved by the
system is Accuracy of 0.9889, Sensitivity of 0.9949
and Specificity of 0.9892.

However, the model requires further extensive testing
before it can be reliable used within the medical
domain as an effective aid to the medical practitioner.
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Figure 1: Image showing different cellular components of Blood and different infections that is needed to
be identified by the proposed system
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Specification Value

Dataset #1

Total Number of Scanned Slides 54 slides

Sample size based on Cochrane’s sample 47 slides (23 Normal and 24 infected)

size selection for small datasets 12 P.vivax/ 12 P.falciparum

Number of non-overlapping blocks from 30 [ Convenience based sampling][From a

each slide set of 2790 images] (Understanding Power
and Rules of Thumb for Determining
Sample Sizes)(each of size 5.08 x 3.39 cm? [

600 x 400 pixel® ])

Image Resolution 300

Magnification used for each Digital Image 100X

Total Number of images used for the 30 x 47 = 1410 images
Study
Normal Images 743 (Some slide with infection have normal

images due to low Parasitaemia)

Images with Infection 667

(]

[=T)]

[\
2
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P.vivax/P. falciparum

330/337

Vivax Ring — Tropozoite - Schizont -

Gametocyte

162 -115-34-35

Falciparum Ring — Tropozoite — Schizont

— Gametocyte

Dataset #2

373-38-28-76

Total Number of Scanned Slides

33 slides (10 Normal and 23 Infected)

11 P.vivax/ 12 P.falciparum

Number of non-overlapping blocks from

40 (each of size 5.5 x 2.96 cm? [ 650 x 350

each slide pixel® ])
Image Resolution 300
Magnification used for each Digital Image 100X

Total Number of images used for the

Study

40 x 33 = 1320 images

Normal Images

400

Images with Infection
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P.vivax/P. falciparum 440/480

Vivax Ring — Tropozoite - Schizont - 216 - 153 — 46 — 52

Gametocyte
Dataset #3
Total Number of Scanned Slides 80 slides (33-normal, 23-P.vivax, 24-
P.falciparum)
Image Resolution 300

Magnification used for each Digital Image 100X

Total Number of images used for the 1410 + 1320 = 2730 images

study

Normal Images 743 + 400 = 1143 images
Images with Infection 667 + 920 = 1587 images
P.vivax/P. falciparum 770/817

Vivax Ring — Tropozoite - Schizont - 378 — 268 — 80 — 87
Gametocyte
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Falciparum Ring — Tropozoite - Schizont 905 —82 — 67 — 184
— Gametocyte

Table 1: The parameters followed for dataset development with the description of different parasites as
observed by experts (ground truth)

.

(A) (B)
LA,

R 20

re 8

Figure 2 Sample Dataset at 1000X (a) MaMic image showing mature P. vivax Schizont, (b) MaMic image
showing multiple infection of P. falciparum rings, (c) Hospital supplied slide

Conversion of RGB image to
Lab color space

Salt and Pepper Noise
Correction

@ Red Blood Call
Cluster
@ WhiteBlood Cellsand |,
Platelets (predominantly)
@ Background

Pixels

Thin blood smearimage
acquisition

Color based segmentation
—1 usingK-means clustering (K=3)
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Binary foreground mask

obtained by 3-meeans clustering

Illumination corrected image

Enumeration of red blood
cells for Parasitaemia

Reconstructed Watershed based de-clumped

image-segmented & annotated

Algorithm Evaluation Parameter Value obtained
Accvracy R 11%
Sensvaty(True Positve Rate 0.9645
Specificaty(1- False Posstive Rate) 1
Area uader Curve (AUC) 0.6383 Amnotations indicating

presence of malaria

Figure 4: The diagrammatic representation of the parasite detection with results

Feature Name Number of Features

Nuclear Mass Presence Number of color coded nuclear mass in a colored
component ; Present/absent feature

(2 features)

()

oo

©
Ay

© 2020 IJMSCR. All Rights Reserved



Difference of area from
Median Area of complete
uninfected RBC in a
radius of 2 x major axis
length of the component
area under consideration

Numerical feature, a negative value indicates the
size of the area under consideration is smaller than
the area of the average uninfected RBC in the
given area and

likewise for positive value (1 feature)

Proportion of marked
out infection to

normal cell area( ratio of
color pixel values)

Numerical float value(1 feature)

Features from other authors

Texture features —
Tamura Features

3 features for each grayscale cell component

Texture features — 88 features for eac Graysc Cell
GLCM h ale

component
Texture features — Gabor | Not used

Features

Total Features

94 features

Clinical Features

Feature Name

Number of Features

Nuclear Mass Presence

Number of color coded nuclear mass in a colored
component ; Present/absent feature

(2 features)

Difference of area from
Median Area of complete
uninfected RBC in a
radius of 2 x major axis
length of the component
area under consideration

Numerical feature, a negative value indicates the
size of the area under consideration is smaller than
the area of the average uninfected RBC in the
given area and

likewise for positive value (1 feature)

Proportion of marked
out infection to

normal cell area( ratio of
color pixel values)

Numerical float value(1 feature)

Features from other authors

Texture features —
Tamura Features

3 features for each grayscale cell component

Texture features —
GLCM

88 features for eac Graysc Cell
h ale

© 2020 IJMSCR. All Rights Reserved
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component

Texture features — Gabor | Not used
Features

Total Features 94 features

Table 2: Feature List used for segregation of WBC Cluster from other connected components

Features (considering Pathologist perspective)

Feature Name Number of Features

Infection Morphology Area, Perimeter, Eccentricity (3 features)
Cell Morphology Area, Perimeter, Eccentricity(3 features)
Number of infection instances in a cell 1 feature

Difference of area from Median Area of  Numerical feature, a negative value
complete uninfected RBC in a radius of 2 indicates the size of the area under

x major axis length of the component consideration is smaller than the area of the
area under consideration average uninfected RBC in the given area

and likewise for positive value (1 feature)

Proportion of marked out infection to Numerical float value(l feature)

normal cell area( ratio of color pixel

values)
Features from other authors
Texture features —Tamura Features 3 features for each grayscale cell component
Texture features — GLCM 88 features for each grayscale cell
component
Total Features 100 features

Table 3 Feature List used for Specie and Stage Classification from RBC Cluster
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Dataset | - I"*"lel'ﬂ Dataset 2 - Acquired Dataset 3 — Mixed Dataset
Database 1410 images Dataset from Hospital consisting of 2730 images

Infected WBC
Cluster

Infected RBC
Cluster

Feature Extraction & Optimal Feature
Set Selection

l

Feature Mormalization

]

Classification

Single Classifiers Ensemble Classifiers

SVM,
RBF/Gaussian
Kernel

Ensemble of SVM.,
= ENNK=3) &

MNaive Baves

Weighted Voting of Prediction, -
SVM prediction given highest
Weight (3) and Naive Bayes given
the lowest Weight (1)

Adaboost Classifier
(2 class™ulticlass)

Figure 5 Data-model for Specie and Stage Classification
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Method used for Background | Accuracy achieved
separation(Without illumination

correction of the images)

3-Means clustering 92.19%

Modified Zack’s thresholding 63.75%

Algorithm Performance after image illumination correction

3-Means clustering

Modified Zack’s thresholding

98.96%

63.75%

Table 4: Comparative account of the accuracy achieved by the two methods used for image

Statistical Metric Accuracy Sensitivity Specificity
Used/Proposed
Use of third 100 % 1 1
quartile as a
threshold
Use of Tukey’s 97.82% 0.3829 0.9982

upper hinge as a

threshold

Table 5: Performance statistics for De-Clump algorithm

Dataset Accuracy Sensitivity Specificity
MaMic Database 0.9925 0.9875 0.9942
Acquired Database 0.9865 0.9944 0.9793

Table 6: Red Blood Cell segregation from White Blood Cell in the digitized thin blood smear for the two
datasets under consideration
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Figure 6 (a) WBC cluster containing a WBC and a vivax gametocyte. (b) Colour coded WBC nucleus and
infection, the green represents the WBC nucleus. (c) represents the area of the gametocyte and the
WBC,(d) area of the nucleus that has been used as a feature for segregating WBC from Malaria infection
in WBC Cluster

Figure 7: (a) WBC cluster consisting of RBC joined with Platelet Artefact (b) the radius feature used for

estimation whether the RBC should be considered as normal or bigger in size(infection/ outlier) (c) T

Different stages of infection P.vivax detected by the proposed i
N
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From Red Blood Cell Cluster

Figure 8: P. falciparum infection at different stages as detected by the proposed algorithm

Features Prerequisite Test Performed
Autocorrelation (0°) Shapiro Wilk Test Manmn Whitney Lo Test U=0.
TW(69)=0.892, p=.001<0.05 Pp=.000<.05 [ significant difference]

Autocorrelation (45%) TW(69)=.887.p=.001<.05 TU=0. p=.000<.05 [ significant
difference]

Autocorrelation (90°) WI(69)=_.861.p=.000<.05 U=0. PpP=.000<.05 [ significant
difference]

Autocorrelation (135%) TW(69)=_886.p=.001<.05 TU=0. p=-000<.05 [ significant
difference]

Cluster Shade(0?) TW(69)= .735.p=000<.05 TU=0. p=-000<.05 [ significant
difference]

Cluster Shade(45°) TWI(69)=.728.p=.000=.05 U=0. p=-000<.05 [ significant
difference]

Cluster Shade(90%) TW(69)=.719.p=.000<.05 U=0. Pp=.000=<.05 [ significant
difference]

Cluster Shade(135°) TW(69)=.731.p=.000<.05 TU=0. p=-000<.05 [ significant
difference]

Dissimilarity(0®) TW(69)=.943,p=.038<.05 TU=0. p=.000<.05 [ significant
difference]

Dissimilarity(45°) WI(69)=.941.p=.030<.05 U=0. P=.000<.05 [ significant
difference]

Dissimilarity(90%) TW(69)=.896.p=.001<.05 TU=0. p=-000<.05 [ significant
difference]

Dissimilarity(135°) TWV(69)=_908.p=.003<.05 U=1. p=-000<.05 [ significant
difference]

Energy(0%) W(09)=.864.p=.000=.05 U=0. p=.000<.05 [ significant
difference]

Energy(45”) TW(69)=.888.p=.001<.05 U=, p=.000<.05 [ significant
difference]

Energy(20%) WI(69)=_858.p=.000<.05 U=0. P=.000<.05 [ significant
difference]

Energy(135%) TW(69)=.859,p=.000=.05 U=0. p=.000<.05 [ significant
difference]

Entropy(0°) WI(69)=_909 p=.003<.05 U=0. P=.000<.05 [ significant

difference]
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Entropy(45°) W(69)=.923,p=.008<.05 U=11, p=.000<.05 [ significant
difference]

Entropy(90°) ‘W(69)=.953,p=.080>.05 Levene’s Test(F)=.806(p=.375>0.05)
1(67)=-9.783(p=0.000<0.05) [
significant difference]

Entropy(135°) W(69)=.956,p=.109>.05 Levene’s
Test(F)=3.521(p=.068>0.05) .
t(67)=-9.626(p=0.000<0.05) [
significant difference]

Sum of Squares

Variance(0%)

W(69)=.874,p=.000<.05

U=0, p=000<05 [ significant
difference]

Sum of Squares

Variance(45%)

W(69)=.879.p=.000<.05

U=0, p=000<.05 [ significant
difference]

Sum of Squares

Variance(90%)

W(69)=.852.p=.000<.05

U=0, p=000<05 [ significant
difference]

Sum of Squares

W(69)=.891,p=.001<.05

U=0, p=.000<.05 [ significant

Variance(135°) difference]
Sum Average(0°) W(69)=.982.p=.741>.05 Levene’s Test(F)=.525(p=.473>0.05)
t(67)=7.729(p=0.000<0.05) [
significant difference]
Sum Average(45°) W(69)=.959,p=.139>.05 Levene’s Test(F)=.134(p=.716>0.05)
t(67)=9.726(p=0.000<0.05) [
significant difference]

Sum Average(90°) W(69)=.974,p=434>.05 Levene’s
Test(F)=2.656(p=.111=0.05)
t(67)=9.001(p=0.000<0.05) [
significant difference]

Sum Average(135%) W(69)=.947 p=.049<.05 U=22, p=.000<.05 [ significant

difference]

Sum Variance(0°)

W(69)=.835.p=.000<.05

U=0, p=000<05 [ significant
difference]

Sum Variance(45°)

W(69)=.876.p=.000<.05

U=0, p=000<.05 [ significant
difference]

Sum Variance(90°)

W(69)=.860.p=.000<.05

U=0, p=000<05 [ significant
difference]
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Sum Variance(135°% W(69)=.831.p=.000<.05 U=0, p=.000<.05 [ significant
difference]

Sum Entropy(0°) W(69)=.851,p=.071>.05 Levene’s
Test(F)=6.861(p=.012<0.05)
1(59.563)=-6.794(p=0.000<0.05) [
significant difference]

Sum Entropy(45°) W(69)=.861,p=.159>.05 Levene’s
Test(F)=0.355(p=.555>0.05) .

t(67)=-6.627(p=0.000<0.05)
[ significant difference]

Sum Entropy(90°) W(69)=.917.p=.005<.05 U=16, p=.000<.05 [ significant
difference]

Sum Entropy(135°) ‘W(69)=.980,p=.653>.05 Levene's
Test(F)=0.070(p=.793=0.05) ,

t(67)=6.580(p=0.000<0.05)
[ significant difference]

Difference Entropy(0°) W(69)=.899 p=.001<.05 U=0, p=.000<.05 [ significant
difference]

Difference Entropy(45°) W(69)=.926.p=.010<.05 U=0, p=000<05 [ significant
difference]

Difference Entropy(90”) W(69)=.896.p=.001<.05 U=2, p=000<.05 [ significant
difference]

Difference W(69)=.923.p=.008<.05 U=0, p=.000<.05 [ significant

Entropy(135°) difference]

Table 7: The values of the GLCM features that are significant towards distinction between vivax
Schizont vivax Gametocyte from MaMic dataset

Database Accuracy Sensitivity Specificity
RBC Cluster

MaMic Database 0.9946 0.9963 0.9949

Acquired Database 0.9768 0.9742 0.9773

Mixed Database 0.9860 0.9869 0.9846
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WBC Cluster
MaMic Database 0.9623 0.9609 0.9726
Acquired Database 0.9678 0.9497 0.9705
Mixed Database 0.9649 0.9621 0.9637
Infection in WBC Cluster
MaMic Database 0.9705 0.9714 0.9710
Acquired Database 0.9565 0.9807 0.9693
Mixed Database 0.9625 0.9770 0.9700

Table 8: Performance statistics for identification of infected RBC from normal RBC Cells and for

identification of infected WBC cell cluster using one Vs All Strategy

Classifier(Specie & Accuracy [ For 50 Sensitivity Specificity
Stage Classification)  feature set selected
by CMIM]

K-NN(K=3) 0.9653 0.9472 0.9677
SVM(RBF Kernel) 0.9759 0.9531 0.9753
C- 1, gamma- %
Naive Bayes 0.9245 0.9168 0.9344
Classifier

(Gaussian

distribution assumed)

Ensemble(SVM. 3- 0.9874 0.9925 0.9820
NN, Naive Bayes)

Adaboost (57 trees) 0.9917 0.9948 0.9892

Table 9: Performance statistics for final average classification accuracy across all infection classes with
single and ensemble classifiers (at image level)
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