

Precision Under Magnification: Microsurgery transforms Periodontal Outcomes

Dr.Gutta Veda Sri, Dr.Lingam Venkata Sai Pavan Kumar

Postgraduate student

Drs.Sudha and Nageswara rao Siddhartha Institute of Dental Sciences, Chinaoutpalli

***Corresponding Author:**

Dr. Gutta Veda Sri

Drs.Sudha and Nageswara rao Siddhartha Institute of Dental Sciences, Chinaoutpalli

Type of Publication: Original Research Paper

Conflicts of Interest: Nil

Abstract

Periodontal microsurgery represents an evolution of conventional periodontal surgery driven by the introduction of optical magnification and specialized microsurgical instrumentation. By enabling more precise incisions, atraumatic flap handling, and tension free primary wound closure, microsurgery aims to minimize tissue damage and optimize the biologic conditions for periodontal regeneration. Clinical studies and reviews indicate that this approach can provide comparable or improved clinical attachment gains with reduced morbidity, rapid wound healing, and superior esthetic integration, making microsurgical techniques an increasingly important modality in contemporary periodontal practice.

Keywords: Microsurgery, Magnification, Illumination, Precision

Introduction

Optical magnification has broadened the horizons of dentistry. The main aim of surgical intervention is not only a minimally invasive procedure but also to preserve the maximum amount of function of the organ. Periodontal microsurgery is reaching new heights of precision using loupes and surgical operating microscope. It emphasizes more on increasing visibility, minimize trauma and improve surgical results with the help of microscalpels and micro-sutures.

Definition:

➤ In 1979, Daniel RK defined microsurgery in broad terms as “Surgery performed under magnification by the Microscope”.

➤ In 1980, Serafin described microsurgery as a methodology – “A modification and refinement of existing surgical techniques using magnification to improve visualization, with applications to all specialities.”

➤ In 2009, Dennis Shanelec defined periodontal microsurgery is the refinement of basic surgical techniques made possible by the improvement in visual acuity gained with the use of the surgical microscope.

History:

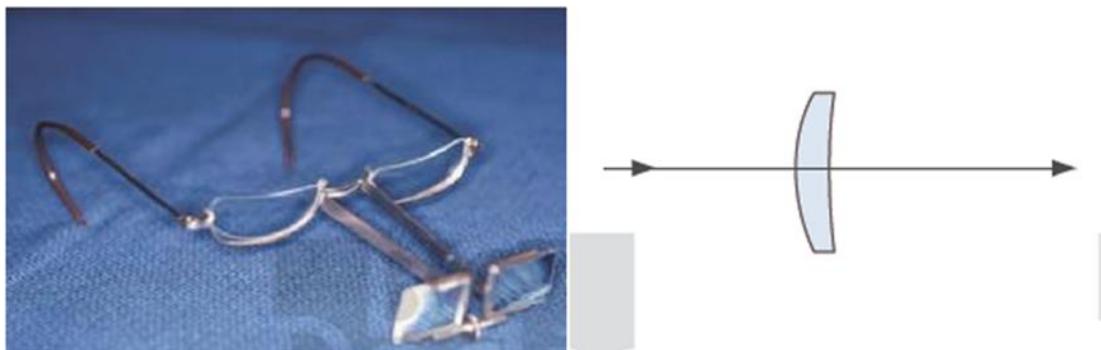
1. Daniel RK in the year 1973, coined the term ‘Microsurgery’ as surgery performed under magnification by the microscope.
2. Apotheker and Jako first introduced commercial operating microscope to dentistry in 1981.
3. Microsurgery was introduced to the field of periodontics in 1992.
4. Continuing education course was subsequently conferred by Shanelec and Tibbetts on periodontal microsurgery at the annual meeting of the American Academy of Periodontology held in 1993.

Rationale For Microsurgery:

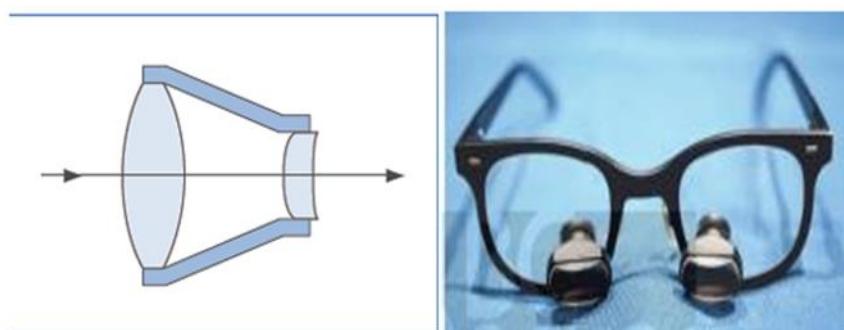
1. Reduced trauma to the tissues
2. Minimal manipulation of tissues
3. Less bleeding
4. Primary intention healing
5. Patient acceptance
6. Better blood perfusion

Principles Of Microsurgery:

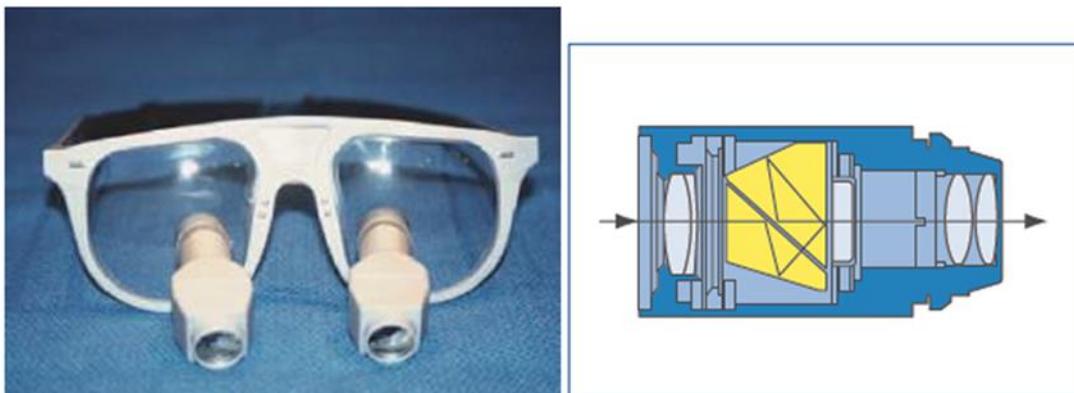
Elements Of Microsurgery:


Magnification Systems:

Magnifying Loupes:

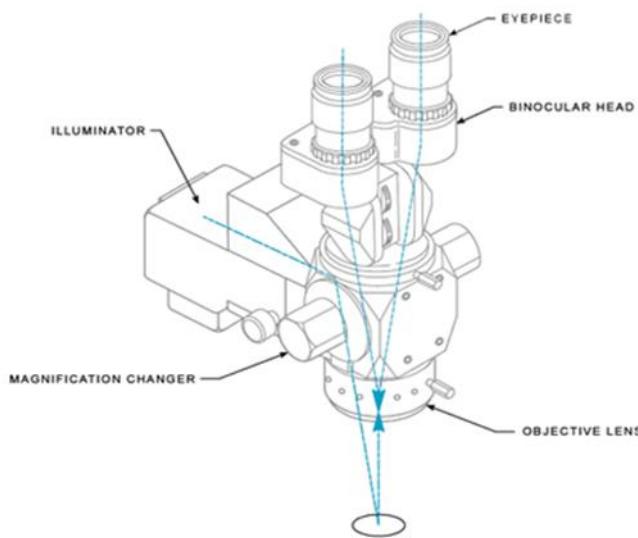

1. Dental loupes are the most common system of optical magnification used in periodontics. Loupes are fundamentally dual monocular telescopes with side-by-side lenses convergent to focus on the operative field. The magnified image formed has stereoscopic properties by virtue of their convergence. A convergent lens optical system is called a Keplerian optical system.
2. Although dental loupes are widely used, they have disadvantages compared with the microscope. The clinician's eyes must converge to view the operative field. This can result in eyestrain, fatigue, and even pathologic vision changes, especially after prolonged use.

3. Three types of Keplerian loupes are typically used in periodontics: simple or single element loupes, compound loupes, and prism telescopic loupes. Each type may differ widely in optical sophistication and individual design.


Simple Loupes: Simple loupes consists of a pair of single meniscus lens. Simple loupes are primitive magnifiers with limited capabilities. Each lens is limited to only two refracting surfaces. Their magnification can only increase by increasing lens diameter and thickness. Size and weight constraints make simple loupes impractical for magnification beyond 1.5X. Another disadvantage of simple loupes is that they are greatly affected by spherical and chromatic aberration. This distorts the image shape and color of objects being viewed.

Compound loupes: Compound loupes use multi element lenses with intervening air spaces to gain additional refracting surfaces. This allows increased magnification with more favourable working distance and depth of field. Magnification of compound loupes can be increased by lengthening the distance between lenses, thereby avoiding excessive light. However, multi element compound loupes become optically inefficient at magnifications above 3X.

Prism Telescopic loupes: The most advanced loupe optical magnification currently available is the prism telescopic loupe. Such loupes employ Schmidt or 'rooftop' prisms to lengthen the light path through a series of switch back mirrors between the lenses. This arrangement folds the light so that the barrel of the loupes can be shortened. Prism loupes produce better magnification, wider depths of field, longer working distances, and larger fields of view than other types of loupes. The barrels of prism loupes are short enough to be mounted on either eyeglass frames or headbands. However, increased weight of prism telescope loupes with magnification above 4X makes headband mounting more comfortable and stable than eye glass frame mounting. Recent innovations in prism telescopic loupes include coaxial fiberoptic lighting incorporated in the lens elements to improve illumination.

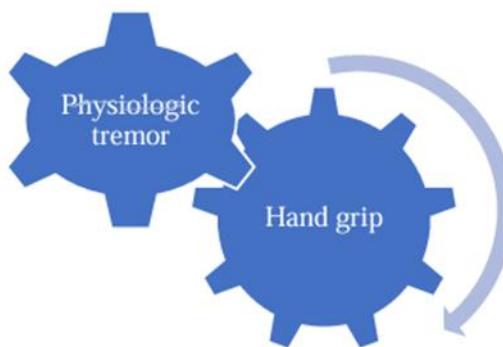


Magnification range Of Surgical Loupes: Dental loupes provide a limited range of magnification ,1.5 X to 6X. Loupes delivering magnification of less than 3X are usually inadequate for the visual acuity necessary for clinical periodontics. Surgical loupes providing magnification of more than 4X are impractical because of their small field of view, shallow depth of focus, and excessive weight. Excessively heavy loupes can make it difficult to maintain a stable visual field.

Surgical operating microscope:

A microscope is nothing more than a monocular or binocular with a close-up lens. A binocular is simply mounted side-by-side for stereoscopic vision. In the binocular concept, the length of the telescope becomes condensed by the use of prisms.

The components of microscope are the basic stereo microscope, the binocular head, and the objective lens. This microscope, however, contains two additional elements: a magnification changer and an illuminator which beams the light in through the objective lens. This type of illumination is desirable because the line of illumination is very close to the viewer's line of vision. Therefore, the surgical field will be illuminated and free of shadows. Shadows would result if the line of illumination was at a large angle of incidence from the viewing axis.


<i>Loupes</i>	<i>Operating Microscopes</i>
<i>1.5x to 10x magnification</i>	<i>2.5x to 20x magnification</i>
<i>Need additional illumination for magnifications of 4x or greater</i>	<i>Use excellent coaxial Fiber-optic illumination, hence does not need additional light source</i>
<i>Operator eye comfort is less as the eyes must converge to view the image</i>	<i>High comfort as it has parallel binoculars</i>
<i>Initially easy to use</i>	<i>Basic training required to use surgical microscope</i>
<i>Less expensive</i>	<i>Main disadvantage is that these are expensive</i>

Toms -Three Dimensional On-Screen Microsurgery System:

Consists of two single chip video cameras mounted on to the custom fit eyepiece adapters, a dual camera-controller, a record image processor, a VCR for optional recording, digital monitor, synchronizing signal emitter and 120 MHz shutter glasses.

The greatest advantage is that they helps in providing a clear and accurate sense of depth perception. o Drawbacks: Technique sensitive, high cost, restricted areas of vision, time consuming.

Hand Control During Microsurgery:

Microsurgical Instruments:

- In addition to the use of magnification and reliance on atraumatic technique, microsurgery requires specially constructed instruments designed specifically to minimize trauma. An important characteristic of microsurgical instruments is their ability to create clean incisions that prepare wounds for healing by primary intention.
- For high precision movements, microsurgical instruments must be approximately 15cm in length.
- Instruments should be circular in cross section to allow for a smooth rotation movement.
- The working tips of microsurgical instruments are much smaller than those of regular instruments.

1. Several types of ophthalmic knives, such as the crescent, lamellar, blade breaker, sclera, and spoon knife, can be used in the field of periodontics.
2. The crescent knife can be used for intrasulcular procedures. This knife is designed with a unilateral bevel and measures 2.4 mm – 3.7 mm. It can be used in connective tissue graft procedures to tunnel, to prepare the recipient site, or to obtain the donor graft.
3. The spoon knife is often used to undermine into the lateral sulcular region in preparation for placement of connective tissue grafts using a sulcular, non-relief technique. This knife is also beveled on one side, thereby allowing the knife to track through the tissue adjacent to bone.

Castroviejo Micro Scissors

Micro Goldman Fox Scissors

Suture Materials:

Smaller needles and sutures: Three principal goals of surgery are eliminating dead space, closing with sufficient but appropriate tension, and immobilizing the wound.

Although 4-0 or 5-0 sutures are typically used in periodontics, in periodontal microsurgery 6-0 and 7-0 sutures are appropriate.

The surgical operating microscope allows the clinician to use smaller sutures and needles and results in minimal dead space, closure with sufficient but appropriate tension, and immobilization of the wound.

Suture geometry:

Suturing techniques are completely different in macrosurgery and microsurgery. The geometry of microsurgical suturing consists of the following points:

1. Needle angle of entry and exit of slightly less than 90 degrees

2. Suture bite size of approximately 1.5 times the tissue thickness

3. Equal bite sizes (symmetry) on both sides of the wound

4. Needle passage perpendicular to the wound

Conclusion:

“From Macro to Micro: Advancing Periodontal Care”

Microsurgical periodontics is technique-sensitive and more demanding than periodontal macrosurgery, but it results in more rapid healing because it is less invasive and less traumatic. The improved visual acuity and ergonomics provide significant advantages to those who take the time to become proficient in microsurgical principles and procedures.

The operating microscope allows the surgeon to practice enhanced, precise, delicate surgical procedures that have important healing processes and outcomes for patients. Periodontal microsurgery and periodontal plastic microscopic surgery provide a natural evolution in the progression of periodontics.

It is a skill that requires practice to achieve proficiency. The small scale of microsurgery presents special challenges in dexterity and perception. Its execution is technique sensitive and more demanding than are conventional periodontal procedures. Microsurgery offers new possibilities to improve periodontal care in a variety of ways.

References:

1. Carranza's Clinical Periodontology- 10th edition
2. Clinical Periodontology and Implant dentistry- Jan Lindhe- 7th edition
3. Cohen- Atlas of cosmetic and Reconstructive Periodontal surgery- 3rd edition
4. Textbook of periobasics: A textbook of periodontics and Implantology- 3rd edition
5. Shanelec DA, Tibbetts LS. A perspective on the future of periodontal microsurgery. *Periodontology* 2000. 1996 Jun;11(1):58-64.
6. Tibbetts LS, Shanelec D. Periodontal Microsurgery. *Dent Clin North Am* 1988;42:339-59
7. Cortellini P, Tonetti MS. Microsurgical approach to periodontal regeneration. *Journal of Periodontology*. 2001 Apr;72(4):559-69.
8. Shanelec DA, Allen EP. Periodontal microsurgery. *Journal of Esthetic & Restorative Dentistry*. 2003 Dec 1;15(7).
9. Dannan A. Minimally invasive periodontal therapy. *Journal of Indian Society of Periodontology*. 2011 Oct 1;15(4):338-43.
10. Belcher J. Periodontal microsurgery. *Practical Periodontal Plastic Surgery*. 2017 Apr 10:13-20.
11. Yadav VS, Salaria SK, Bhatia A, Yadav R. Periodontal microsurgery: Reaching new heights of precision. *Journal of Indian Society of Periodontology*. 2018 Jan 1;22(1):5-11.
12. Chinthakunta V, Sambashivaiah S. Periodontal Microsurgery-A Review. *Journal of Advanced Research in Dental and Oral Health (ISSN: 2456-141X)*. 2023 Apr 25;8(1&2):1-5.