

International Journal of Medical Science and Current Research (IJMSCR)

Available online at: www.ijmscr.com Volume 8, Issue 5 , Page No: 337-343

September-October 2025

Symphysis Grafting In Apicoectomy – Case Report

Prishita Malani¹, Manu Bansal², Rashika Jauhari³, Deepesh Boolchandani⁴, Shruti Tyagi⁵, Darshana Baruah⁶

1,3,4,5,6 Post Graduate Student, ²Professor & HOD,
 Department of Conservative Dentistry and Endodontics,
 ⁶Shree Bankey Bihari Dental College, Ghaziabad, Uttar Pradesh
 1,2,3,4,5 Jaipur Dental College, Jaipur, Rajasthan, India

*Corresponding Author: Prishita Malani

Post Graduate Student,
Department of Conservative Dentistry and Endodontics,
Jaipur Dental College, Jaipur, Rajasthan, India

Type of Publication: Case Report

Conflicts of Interest: Nil

Abstract

Periapical lesions involving anterior teeth pose esthetic and functional challenges, especially when associated with large osseous defects. This case report describes the management of a 20-year-old female patient with a large (>10 mm) periapical lesion in relation to the maxillary left central incisor. The treatment included periapical surgery (apicoectomy) with retrograde filling and simultaneous autogenous bone grafting harvested from the mandibular symphysis. The case highlights surgical considerations, regenerative techniques, and long-term prognosis.

Keywords: symphysis graft, Apicoectomy, large osseous defect, bone regeneration

Introduction

Periapical pathology is a common sequela of pulpal necrosis and chronic infection, often manifesting as granulomas or cystic lesions. Nonsurgical endodontic therapy remains the first-line treatment; however, persistent or large lesions may require surgical intervention. Apicoectomy, combined with curettage and retrograde restoration, facilitates complete debridement of the periapical area. When lesions exceed 10 mm, osseous healing may be compromised, necessitating adjunctive regenerative procedures. Autogenous bone grafts, particularly from the symphysis region, offer osteogenic, osteoinductive, and osteoconductive potential, providing an ideal material for defect repair.

Case Presentation

A 20-year-old female reported to Department of Conservative Dentistry & Endodontics, Jaipur Dental

College, Jaipur with the complaint of swelling and intermittent pain in the upper front tooth region for the past two months. The swelling was localized and recurrent, occasionally associated with discomfort during chewing. Clinical examination revealed a diffuse swelling in the labial vestibule corresponding to the maxillary left central incisor. The tooth appeared slightly discolored compared to the adjacent anterior teeth, was tender on percussion, and failed to respond to pulp vitality testing. The adjacent teeth responded within normal limits. No extraoral swelling or lymphadenopathy was detected, and the patient's medical history was non-contributory.

A periapical radiograph revealed a well-circumscribed unilocular radiolucency, approximately 9.5×4.2 mm in dimension, involving the apex of the left central incisor and extending toward the nasopalatine region.

The margins were corticated, suggestive of a chronic lesion of endodontic origin. Based on the clinical and radiographic findings, a provisional diagnosis of a radicular cyst was made. Since the lesion was around 10 mm and root canal therapy previously attempted on the tooth had not resulted in healing, surgical endodontic management was considered the treatment of choice. The plan involved apicoectomy with curettage of the lesion followed by reconstruction of the defect using an autogenous symphysis bone graft.

Under local anesthesia, a trapezoidal mucoperiosteal flap was reflected in the maxillary anterior region to expose the periapical area. The lesion was carefully enucleated in its entirety and sent for histopathological examination. Approximately 3 mm of the root apex of the central incisor was resected using a surgical bur under irrigation. A retrograde cavity was then prepared with ultrasonic tips and filled with mineral trioxide aggregate to ensure a hermetic apical seal. The periapical defect created after enucleation and apicoectomy was large and would not have healed predictably without regenerative assistance. To overcome this, autogenous bone was harvested from the mandibular symphysis.

Through a separate intraoral incision in the anterior mandible, a corticocancellous block graft measuring approximately 3×3 mm was obtained using a round bur and chisel under copious irrigation. The donor site was packed with hemostatic material, sutured primarily, and postoperative care instructions were provided. The harvested graft was crushed and mixed with platelet rich fibrin to place it into the periapical defect of the maxillary left central incisor. It was stabilized in the cavity, and the flap was repositioned and sutured with 3-0 black silk sutures.

The patient was prescribed amoxicillin 500 mg three times daily for five days, ibuprofen 400 mg three times daily for three days, and chlorhexidine mouth rinse to be used twice daily for two weeks. She was advised to maintain meticulous oral hygiene, avoid trauma to the surgical site, and follow a soft diet. Sutures were removed after one week, at which point healing was satisfactory and the patient was free of symptoms.

Radiographic and clinical follow-up was carried out at regular intervals. At three months, the patient was asymptomatic and radiographs revealed early evidence of bone regeneration within the defect. By six months, a distinct trabecular bone pattern was visible, and the radiolucency had reduced considerably in size. Histopathological evaluation of the excised tissue confirmed the diagnosis of a radicular cyst.

This case illustrates the significance of a combined surgical and regenerative approach in the management of large periapical lesions. Although nonsurgical retreatment may be considered for periapical pathology, lesions exceeding 10 mm in diameter often do not heal predictably without surgical intervention. Apicoectomy is effective in eliminating the diseased root apex, removing the infected periapical tissues, and providing a retrograde seal. However, the resultant bony defect, especially in the esthetically critical anterior maxilla, requires reconstruction to restore both function and appearance. Autogenous bone grafts remain the gold standard for such procedures because possess osteogenic, osteoinductive, osteoconductive properties. Among intraoral donor sites, the mandibular symphysis is particularly suitable for small to medium osseous defects due to its accessibility, proximity, and minimal morbidity.

In this case, the symphysis graft provided an ideal scaffold for new bone formation and promoted predictable regeneration of the periapical region. Previous studies have documented the high success rates of using autogenous grafts in periapical surgery, and the present case corroborates these findings. The patient being young, with high esthetic demands, benefitted significantly from the approach, as it not only resolved the pathology but also preserved the integrity of the anterior maxillary esthetics.

The outcome of this case emphasizes that apicoectomy combined with autogenous bone grafting from the symphysis can be considered a reliable modality in the management of large periapical lesions. It ensures elimination of the lesion, regeneration of lost bone, restoration of function, and preservation of esthetics, particularly in young patients where long-term tooth retention is paramount.

FIG.1 PRE-OPERATIVE RADIOGRAPH & PHOTOGRAPH

Fig.2 CBCT EVALUATION

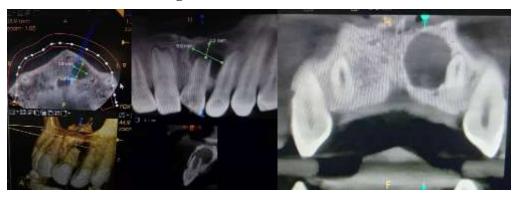


FIG.3: SPLINTING, INCISION AND CURETTAGE

FIG.4: VESTIBULAR INCISION,3*3 WINDOW MARKING AND BONE EXTRACTION

FIG 5: HAEMOSPONGE PLACEMENT AND FLAP CLOSURE

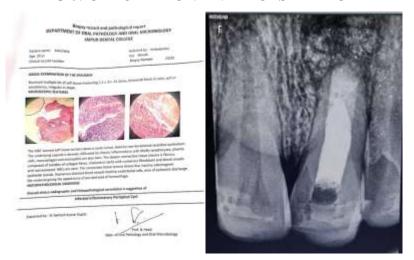

FIG 6: BONE MILLER, PRF, CRUSHED BONE MIXED WITH PRF

FIG 7: RETROGRADE MTA, AUTOGRAFT PLACEMENT AND FLAP CLOSURE

FIG 8: OBTURATION AND BIOPSY REPORT

FIG 9: FOLLOW UP

Discussion

Large periapical lesions (>10 mm) present a surgical challenge, often compromising natural bone healing. While alloplastic and allogenic grafts are available, autogenous grafts remain the gold standard due to their osteogenic properties. The mandibular symphysis provides sufficient cancellous bone with minimal donor site morbidity.

The combination of apicoectomy, retrograde sealing, and symphysis grafting ensures thorough infection control and accelerated osseous regeneration. Reports suggest that such combined therapy offers predictable long-term outcomes in young patients, preserving natural dentition and esthetics.

Conclusion

Apicoectomy with autogenous bone grafting is a reliable treatment modality for large periapical lesions unresponsive to conventional therapy. The mandibular symphysis serves as an excellent donor site in young patients, ensuring successful bone regeneration and functional restoration.

References

- 1. Kim S, Kratchman S. Modern endodontic surgery concepts and practice: a review. J Endod. 2006;32(7):601-23.
- 2. Tsesis I, Faivishevsky V, et al. Outcome of surgical endodontic treatment performed by a modern technique: A meta-analysis. J Endod. 2009;35(11):1505-11.

- 3. von Arx T, Hänni S, Jensen SS. Clinical results with autogenous bone grafts from the mandibular symphysis for periapical surgery. Int Endod J. 2005;38(5):347-55.
- 4. Kim E, Song JS, Jung IY, Lee SJ, Kim S. Prospective clinical study evaluating endodontic microsurgery outcomes for cases with lesions of endodontic origin. J Endod. 2008;34(5):546-51.
- 5. Lin LM, Ricucci D, et al. Surgical management of periapical lesions: healing outcomes and prognostic factors. Endod Topics. 2011;26:79-98.
- 6. Nair PN. Pathogenesis of periapical lesions and the periapical endodontic microsurgery. Semin Endod. 1998;23(1):90-8.
- 7. Chong BS, Pitt Ford TR. Root-end filling materials: rationale and tissue response. Endod Topics. 2005;11:114-30.
- 8. von Arx T, AlSaeed M. The use of regenerative techniques in apical surgery: a literature review. Saudi Dent J. 2011;23(3):113-27.
- 9. Kim SG, et al. Bone grafts and bone substitutes in dentistry. Oral Maxillofac Surg Clin N Am. 2010;22:255-66.
- 10. Barone A, Ricci M, Tonelli P, Covani U. Tissue reactions to grafting materials in periapical surgery. Int J Periodontics Restorative Dent. 2008;28(2):123-9.
- 11. Scarano A, et al. Symphyseal bone graft for alveolar ridge augmentation: a clinical and histologic study. Int J Oral Maxillofac Implants. 2002;17(6):850-6.

- 12. Pecora G, et al. Periradicular surgery: a prospective clinical study of 100 consecutive cases. J Endod. 2001;27(9):599-606.
- 13. Dietrich T, et al. Donor site morbidity after chin bone harvesting. Clin Oral Implants Res. 2002;13(5):508-13.
- 14. Kim E, Kim Y. Influence of bone graft materials on healing of periapical lesions after endodontic
- microsurgery: randomized clinical trial. J Endod. 2014;40(1):20-6.
- 15. Uyanık MO, et al. Success rate of apical microsurgery with or without bone grafts and guided tissue regeneration. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(2)\:e73-9.