

International Journal of Medical Science and Current Research (IJMSCR)

Available online at: www.ijmscr.com Volume 8, Issue 5 , Page No: 307-317

September-October 2025

IJMSCR

Recent Advances in Pediatric Vaccine

Development: A Comprehensive Narrative Review of mRNA Platforms, Respiratory Syncytial Virus, Dengue, and Malaria Vaccines 2019 2025

Niraj Nagesh Lakhmawar^{1*}, Neha Khadke², Abhijit Shinde³ ,Sunil Natha Mhaske⁴ _{1,2,3,4}Department of Pediatrics,

^{1,2,3,4}Dr. Vithalrao Vikhe Patil Foundation's Medical College & Hospital, Ahilyanagar, Maharashtra, India

*Corresponding Author: Dr. Niraj Nagesh Lakhmawar

Department of Pediatrics Dr. Vithalrao Vikhe Patil Foundation's Medical College & Hospital Vadgaon Gupta, Vilad Ghat, Ahmednagar, Maharashtra 414111, India

Type of Publication: Original Research Paper

Conflicts of Interest: Nil

Abstract

Background: The landscape of pediatric vaccine development has undergone revolutionary transformation since 2019, with unprecedented advances in mRNA vaccine platforms, respiratory syncytial virus RSV) prevention strategies, and the first successful deployments of malaria vaccines. This comprehensive narrative review synthesizes current evidence on recent innovations in pediatric immunization.

Methods: We conducted a comprehensive literature review of PubMed, Embase, Cochrane Library, and clinical trial registries from January 2019 to September 2025. We included randomized controlled trials, cohort studies, systematic reviews, and regulatory documents focusing on mRNA vaccines, RSV immunization, dengue vaccines, and malaria vaccines in pediatric populations 0 18 years). Evidence quality was assessed using established criteria for narrative reviews.

Results: Recent studies demonstrate exceptional advances across all vaccine platforms. mRNA vaccine platforms showed robust immune responses meeting prespecified noninferiority criteria in pediatric populations with favorable safety profiles. Nirsevimab achieved 89 98% effectiveness against RSV hospitalization with sustained protection over 150 days in real-world implementations. Malaria vaccines RTS,S and R21) showed 56 75% efficacy and are now implemented in 19 countries, preventing an estimated 13% reduction in mortality among age-eligible children. TAK 003 dengue vaccine demonstrated 80.2% efficacy against virologically confirmed dengue at one year, with 4-year cumulative efficacy of 61.2%, without requiring serostatus screening.

Conclusions: Transformative advances in pediatric vaccine development have revolutionized childhood disease prevention. These innovations represent the most significant progress in pediatric immunization since the introduction of conjugate vaccines, with substantial implications for global child health outcomes and establishing foundations for next-generation vaccine technologies.

Keywords: pediatric vaccines; mRNA vaccines; respiratory syncytial virus; malaria vaccines; dengue vaccines; vaccine development; immunization; global health; nirsevimab; TAK 003

Introduction

Vaccine-preventable diseases remain among the leading causes of morbidity and mortality in children worldwide, with approximately 1.5 million deaths

annually in children under five years despite existing vaccination programs

1. The period from 2019 to 2025 has witnessed unprecedented innovation in pediatric vaccine

development, fundamentally transforming approaches to childhood immunization and disease prevention 2 4

.

The convergence of advanced biotechnology platforms, enhanced understanding of pediatric immunology, and urgent global health needs catalyzed by the COVID 19 pandemic has accelerated remarkable breakthroughs across multiple vaccine modalities 5 7 . mRNA vaccine technologies, initially validated through emergency pandemic responses, have rapidly evolved to diverse pathogens address pediatric applications extending from respiratory viruses to personalized cancer immunotherapy 8 10 Monoclonal antibody platforms have achieved unprecedented clinical success in RSV prevention, offering passive immunization alternatives that traditional overcome vaccine development challenges in vulnerable infant populations 11 13.

Simultaneously, decades of malaria vaccine research culminated have in historic large-scale implementations of RTS,S and R21 vaccines across sub-Saharan Africa, representing milestone achievements in addressing one of childhood's most devastating infectious diseases 14 16. Dengue vaccine development has progressed with nextgeneration platforms eliminating serostatus testing requirements while maintaining robust efficacy profiles across diverse endemic regions 17 19.

These advances occur within an evolving regulatory landscape that increasingly recognizes pediatric-specific considerations including developmental immunology, enhanced safety requirements, and ethical frameworks for research in vulnerable populations 20 22 . The integration of artificial intelligence, advanced manufacturing technologies, and global access initiatives has further accelerated translation from laboratory innovation to clinical implementation 23 25 .

This comprehensive narrative review synthesizes current evidence on recent advances in pediatric vaccine development, with particular focus on mRNA platforms, RSV prevention strategies, malaria vaccine implementation, and dengue vaccine innovations. We examine clinical efficacy data, safety profiles, real-world effectiveness, implementation challenges, and implications for global pediatric health policy.

2. Methodology

2.1 Literature Search Strategy and Data Sources

We conducted a comprehensive narrative literature review to synthesize current evidence on pediatric vaccine advances from 2019 to 2025. Electronic databases searched included PubMed/MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and Web of Science Core Collection from January 1, 2019, through September 2025. Clinical trial registries (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform) were searched for ongoing and completed studies.

2.2 Study Selection and Inclusion Criteria

Inclusion criteria: 1 Study participants aged 0 18 years or studies with pediatric subgroup analyses; 2 Interventions involving mRNA vaccines, RSV vaccines/monoclonal antibodies, malaria vaccines, or dengue vaccines; 3 Study designs including randomized controlled trials, prospective cohort studies, case-control studies, systematic reviews, meta-analyses, and regulatory assessments; 4 Publications in English language; 5 Publication or data availability dates from 2019 through 2025; 6 Studies reporting efficacy, safety, immunogenicity, or implementation outcomes.

Exclusion criteria: 1 Studies limited to adult populations without pediatric data; 2 Purely preclinical studies (animal models or in-vitro studies only); 3 Case reports, editorials, commentaries, or opinion pieces without original data; 4 Studies focusing on vaccines outside the four primary categories of interest; 5 Duplicate publications or overlapping datasets without additional information.

2.3 Data Extraction and Quality Assessment

Data extraction focused on study characteristics (design, population, sample size, duration), intervention (vaccine type, details dosing, administration), primary and secondary outcomes (efficacy, safety, immunogenicity), implementation factors (uptake rates, real-world effectiveness, policy implications). For clinical trials, we extracted efficacy data with confidence intervals, safety profiles including adverse event and immunogenicity measures rates. reported.

2.4 Limitations of This Review

This narrative review has several important limitations. We did not conduct a formal systematic review with metaanalysis, limiting our ability to provide pooled quantitative estimates across studies. The rapidly evolving nature of vaccine development means some recent data may not yet be published in peer-reviewed literature. Publication bias may affect the availability of negative or neutral findings. The heterogeneity of study populations, outcome measures, and follow-up periods limits direct comparisons across studies.

3. mRNA Vaccine Platform Advances in Pediatric Applications

3.1 Technological Innovation and Platform Evolution

mRNA vaccine platforms have undergone remarkable evolution from emergency pandemic responses to sophisticated pediatric immunization tools with enhanced stability, targeted delivery systems, and optimized immunogenicity profiles 8 10 . mRNA 1345, specifically designed for RSV prevention, represents one of the most advanced mRNA vaccine candidates, utilizing stabilized pre-fusion F protein and optimized lipid nanoparticle delivery systems that have demonstrated exceptional efficacy in clinical trials $\frac{2}{}$.

The platform incorporates N1-methylpseudouridine modifications that enhance mRNA stability while reducing innate immune activation, a crucial advancement for pediatric safety profiles where immune system development varies across age groups 9,27 . Lipid nanoparticle formulations have been specifically optimized for different age groups, with ionizable lipids achieving efficient intracellular delivery while minimizing systemic inflammatory responses $\frac{3}{2}$.

Circular RNA (circRNA) vaccines represent next-generation platforms offering enhanced stability characteristics that could eliminate cold-chain storage requirements, particularly advantageous for pediatric vaccination programs in resource-limited settings ⁴. These self-replicating systems provide prolonged antigen expression with reduced initial dosing requirements, addressing practical challenges of multiple pediatric immunization visits 4 .

3.2 Clinical Development and Safety Profiles in Children

Pediatric mRNA vaccine development has demonstrated consistently favorable safety profiles across multiple age groups and vaccine candidates. mRNA 1273 booster studies in children aged 6 months to 11 years showed safety profiles comparable to primary vaccination series, with systemic reaction rates of 15.4% in younger children 6 months-5 years) and 21.8% in school-age children 6 11 years) following booster doses ⁵.

Immunogenicity data consistently demonstrate robust immune responses in pediatric populations meeting or exceeding adult benchmarks. Geometric mean neutralizing antibody titers following mRNA 1273 boosters met prespecified noninferiority criteria compared to adult responses, with seroconversion rates exceeding 95% across all pediatric age groups studied $\frac{5}{2}$.

mRNA 1345 clinical development has shown remarkable success in adult populations, with the ConquerRSV Phase 2/3 trial demonstrating 83.7% efficacy against RSV-associated lower respiratory tract disease in adults aged ≥ 60 years $\frac{2}{}$. The vaccine induced 8.4-fold increases in RSV A neutralizing antibodies and 5.1-fold increases against RSV B, with seroresponse rates of 74.2% and 56.5% respectively $\frac{6}{}$. Safety monitoring has identified no significant safety signals, with adverse event profiles similar to other licensed vaccines 26,31 .

3.3 Emerging Applications and Manufacturing Advances

Personalized mRNA cancer vaccines are advancing in pediatric oncology applications, with over 120 active clinical trials investigating RNA-based therapeutics for various malignancies including pediatric brain tumors and solid tumors 32,33. Recent advances

include targeted gene therapy approaches that can reprogram immune responses within 48 72 hours, showing particular promise for aggressive pediatric cancers including glioblastoma 7.

Combination vaccine approaches are in advanced development, with potential integrated formulations targeting RSV, human metapneumovirus, and parainfluenza virus type 3 in single-dose presentations for pediatric populations $\frac{2}{2}$. These combination approaches could significantly reduce the number of immunization visits required while maintaining individual vaccine immunogenicity $\frac{2}{2}$.

Manufacturing innovations have dramatically reduced production timelines from traditional 9-week processes to under 4 weeks while maintaining regulatory compliance and quality standards $\frac{8}{}$. However, costs for personalized therapeutic applications remain substantial at \$100,000 \$200,000 per patient, highlighting ongoing needs for manufacturing optimization, particularly for broader pediatric applications $\frac{8}{}$.

4. Respiratory Syncytial Virus: Revolutionary Prevention Breakthrough

4.1 Nirsevimab: Paradigm-Shifting Effectiveness

Nirsevimab Beyfortus) represents the most significant breakthrough in pediatric RSV prevention, achieving effectiveness rates that exceeded initial clinical trial projections in real-world implementations 11 13,34 . This extended half-life monoclonal antibody targets the highly conserved antigenic site \emptyset on the RSV pre-fusion F protein, providing sustained neutralizing activity for approximately 150 days following single-dose administration $\underline{9}$.

Real-world effectiveness data from 2024 2025 RSV seasons has demonstrated remarkable clinical impact exceeding initial trial estimates. Studies reported 89% effectiveness against medically attended RSV-associated acute respiratory illness and 93% effectiveness against RSV-associated hospitalization in infants receiving nirsevimab ¹⁰. Additional data showed 87.2% effectiveness against RSV lower respiratory tract disease and

98.0% effectiveness against hospitalized RSV lower respiratory tract disease $\frac{11}{2}$.

These effectiveness rates significantly exceed the 74.5% efficacy against RSV lower respiratory tract infection reported in the original MELODY Phase 3 trial, demonstrating that real-world implementation can achieve superior outcomes compared to controlled trial settings 11,34,35.

4.2 Population-Level Implementation Success

European implementation programs have provided comprehensive real-world evidence confirming exceptional effectiveness across diverse healthcare systems and populations. Spain's Galicia region documented 82% effectiveness against RSV lower respiratory tract infections requiring medical attention and 87% effectiveness against severe disease requiring oxygen support during the 2023 2024 RSV season ¹².

Luxembourg's national implementation demonstrated dramatic population-level impact, with RSV-associated hospital admissions in infants under 6 months decreasing from 232 cases in the prenirsevimab season to 72 cases following implementation, representing a 69% reduction 12 . The mean age of hospitalized children increased from 7.8 months to 14.4 months, indicating protection of the most vulnerable infant population 12 .

France's comprehensive analysis reported 75.9% effectiveness in preventing pediatric intensive care unit admissions for RSV, with safety profiles matching those observed in clinical trials ¹³. Uptake rates have consistently exceeded expectations: 84% in Luxembourg, 91.7% in Galicia, and 92% in Navarre, demonstrating high acceptability among healthcare providers and families 36 37 .

4.3 Next-Generation RSV Therapeutics in Development

Advanced monoclonal antibody development continues with multiple candidates in clinical development targeting different antigenic sites and offering enhanced properties. Research focuses on extending duration of protection beyond the current 150-day effectiveness period of nirsevimab while maintaining safety profiles suitable for vulnerable infant populations ¹⁴.

Global access initiatives are developing more affordable RSV prevention options specifically for low- and middleincome countries through optimized

manufacturing processes and enhanced thermostability. These efforts aim to make RSV prevention accessible globally, with projected pricing significantly lower than current monoclonal antibody costs $\frac{14}{2}$.

4.4 Maternal RSV Vaccination Strategies

Abrysvo RSVpreF maternal vaccination provides complementary protection through transferred maternal antibodies, demonstrating 81.1% vaccine efficacy against severe RSV-associated lower respiratory tract illness in infants within 90 days of birth ¹⁵. The pivotal MATISSE trial showed sustained protection with 69.4% efficacy extending to 180 days postpartum, offering comprehensive protection during the most vulnerable early months of life ¹⁵.

Safety profiles in pregnant women have been consistently reassuring across multiple large-scale studies, with no increased risks of preterm birth, low birth weight, congenital anomalies, or pregnancy complications 15 . Implementation strategies are being developed to optimize timing of maternal vaccination and coordination with infant nirsevimab administration to maximize protection while avoiding potential interference 15 .

5. Malaria Vaccines: Historic Implementation Achievements

5.1 RTS,S/AS01 First-Generation Breakthrough Implementation

RTS,S/AS01 Mosquirix) achieved historic significance as the first malaria vaccine to receive WHO recommendation for widespread use in children, representing the culmination of over three decades of development efforts 14 16. This vaccine targeting the circumsporozoite protein of *Plasmodium falciparum* demonstrated 56% efficacy against clinical malaria over 12 months in children aged 5 17 months in Phase 3 trials 16.

The Malaria Vaccine Implementation Programme MVIP conducted in Ghana, Kenya, and Malawi provided crucial real-world evidence of population-level impact. The program demonstrated a 13% reduction in all-cause mortality among age-eligible children and significant reductions in severe malaria hospitalizations, validating the vaccine's public health value beyond individual protection ¹⁷.

Large-scale implementation has expanded rapidly, with 19 countries introducing RTS,S as part of routine childhood immunizations by September 2025 ¹⁷—. Safety monitoring across all implementation sites has confirmed acceptable safety profiles, with no increased risks of meningitis, cerebral malaria, or overall mortality concerns that were initially raised during development ¹⁷—. Coverage rates have exceeded 70% in most implementation areas, demonstrating successful integration into existing immunization programs ¹⁷—.

5.2 R21/Matrix-M Next-Generation Advancement

R21/Matrix-M represents significant technological advancement in malaria vaccine development, achieving 75% efficacy when administered seasonally in areas of highly seasonal malaria transmission where seasonal malaria chemoprevention is also provided 40 41 . This high efficacy matches the best results achieved by RTS,S under optimal conditions while requiring substantially lower antigen doses 5 μg vs. 25 μg), facilitating large-scale manufacturing $\frac{18}{}$.

Phase 3 clinical trials enrolled 4,800 children ages 5 36 months across Mali, Burkina Faso, Kenya, and Tanzania, demonstrating sustained high efficacy against clinical malaria through 18 months post-vaccination with booster doses $\frac{19}{}$. The vaccine's Matrix-M adjuvant enhances immunogenicity while maintaining favorable safety profiles comparable to RTS.S $\frac{19}{}$.

WHO recommendation for R21/Matrix-M was issued in October 2023, with regulatory approvals from Ghana, Nigeria, and other African authorities facilitating implementation planning $^{\underline{18}}$. Manufacturing capacity projections indicate potential production of up to 200 million doses annually, with cost estimates below \$5 per dose significantly improving accessibility compared to RTS,S 40 41 .

5.3 Population-Level Impact and Global Implementation

Mathematical modeling studies estimate that optimal deployment of malaria vaccines across sub-Saharan Africa could prevent approximately 181,000 deaths annually, with the greatest impact in areas of moderate to high malaria transmission ¹⁷. Economic analyses demonstrate favorable cost-effectiveness ratios in

endemic settings, particularly when integrated with existing malaria control interventions $\frac{17}{2}$.

GAVI Alliance support has committed \$155.7 million for malaria vaccine rollout through 2025, enabling procurement and delivery infrastructure development across eligible countries ²⁰. Implementation strategies emphasize integration with existing child health platforms, including routine immunization schedules, seasonal malaria chemoprevention programs, and insecticide-treated net distribution campaigns ¹⁷.

Community engagement initiatives have achieved 85% acceptance rates exceeding implementation areas, with culturally appropriate communication strategies addressing concerns about new vaccine technology and potential interference with traditional practices $\frac{17}{2}$. Surveillance systems established through implementation programs provide ongoing monitoring of vaccine effectiveness, safety, and impact on malaria epidemiology, including assessments for potential parasite resistance development $\frac{17}{2}$.

5.4 Future Malaria Vaccine Pipeline and Innovations

Next-generation malaria vaccines in development include transmission-blocking vaccines targeting sexual stage parasites to interrupt transmission cycles, multi-stage vaccines combining pre-erythrocytic and blood-stage antigens for enhanced protection, and whole sporozoite vaccines utilizing metabolically active parasites ²¹. mRNA malaria vaccine platforms are in preclinical development, offering potential advantages including rapid manufacturing capabilities and enhanced immunogenicity through platform optimization ²¹.

6. Dengue Vaccine Evolution: Clinical Success and Implementation

6.1 TAK 003 Qdenga Breakthrough Without Serostatus Requirements

TAK 003 Qdenga represents the most significant advancement in dengue vaccine development, eliminating the requirement for serostatus testing while maintaining robust efficacy profiles across diverse populations 17 19. This tetravalent liveattenuated vaccine demonstrated 80.2% vaccine efficacy against virologically confirmed dengue at one

year post-vaccination in the pivotal DEN 301 Phase 3 trial $\frac{22}{2}$.

Long-term follow-up data from the DEN 301 study revealed cumulative 4-year efficacy of 61.2% against virologically confirmed dengue and 84.1% efficacy against hospitalized dengue, demonstrating sustained protection against severe disease manifestations ²². However, efficacy varies significantly by age group: 43.5% in children aged 4 5 years, 63.5% in ages 6 11 years, and 67.7% in ages 12 16 years, highlighting the importance of age-stratified implementation strategies ²²

Global regulatory approvals have been granted in over 30 countries worldwide, including the European Union, United Kingdom, Brazil, Argentina, Indonesia, and Thailand $\frac{23}{}$. The vaccine's approval without serostatus screening requirements represents a transformative advancement in dengue prevention accessibility, eliminating a major implementation barrier that limited previous vaccine approaches $\frac{23}{}$.

6.2 Safety Profile and Real-World Implementation

Long-term safety monitoring through 4.5 years of follow-up has demonstrated consistent safety profiles with no increased risk of severe dengue in seronegative recipients, addressing primary concerns raised by the CYD TDV

Dengvaxia) experience 17 18 . Serious adverse event rates were comparable between vaccine and placebo groups 0.2% vs 0.3%, with no vaccine-related deaths or life-threatening events reported $\frac{22}{3}$.

Post-marketing surveillance across implementation countries has confirmed clinical trial safety findings, with robust pharmacovigilance systems monitoring rare adverse events and long-term outcomes $\frac{23}{2}$. Real-world effectiveness studies are ongoing across multiple implementation sites to assess vaccine performance under routine use conditions $\frac{23}{2}$.

6.3 Regional Development and Access Programs

India's indigenous dengue vaccine development has advanced with the ICMR and Panacea Biotec dengue vaccine program, representing significant progress toward regional vaccine independence and addressing dengue burden in South Asian populations ²⁴. This development demonstrates the global expansion of

dengue vaccine research beyond traditional pharmaceutical centers $\frac{24}{}$.

Pan American Health Organization PAHO) recommendations support TAK 003 implementation in endemic countries with high disease burden, adequate healthcare infrastructure for vaccine delivery, and robust surveillance systems for safety monitoring ²⁵. Costeffectiveness analyses demonstrate favorable economic profiles in high-transmission settings, with projected cost savings from reduced hospitalizations and healthcare utilization ²⁵.

6.4 Lessons from CYD TDV and Improved Implementation Frameworks

The CYD TDV Dengvaxia) experience in the Philippines provided crucial insights into dengue vaccine implementation challenges, particularly regarding potential disease enhancement in dengue-seronegative individuals $\frac{26}{}$. These lessons informed development of enhanced surveillance systems, more rigorous safety monitoring protocols, and improved regulatory frameworks for dengue vaccine assessment $\frac{26}{}$.

Updated WHO recommendations for CYD TDV emphasize individual pre-vaccination serological screening in high-transmission settings with adequate laboratory capacity, while highlighting TAK 003's advantages in eliminating screening requirements for broader implementation $\frac{26}{100}$. Enhanced pharmacovigilance systems developed following the CYD TDV experience have strengthened safety monitoring capabilities for all dengue vaccines $\frac{26}{100}$.

7. Global Implementation: Challenges, Solutions, and Equity

7.1 Vaccine Equity and Access Disparities

Global vaccine equity remains a persistent challenge, with pediatric populations in low- and middle-income countries facing disproportionate barriers to accessing innovative vaccine technologies 45 46. The COVID 19 pandemic highlighted existing inequities while simultaneously catalyzing unprecedented initiatives to address manufacturing disparities and improve global access ²⁷.

WHO mRNA Technology Transfer Programme continues expanding through establishment of manufacturing capabilities across multiple continents, supporting regulatory harmonization frameworks and technology transfer to increase global production capacity ²⁷—. CEPI Coalition for Epidemic Preparedness Innovations) has committed \$3.5 billion toward accelerating vaccine development for epidemic threats disproportionately affecting children in resource-limited settings ²⁷.

7.2 Manufacturing Innovation and Supply Chain Optimization

Decentralized manufacturing strategies are transforming vaccine accessibility through regional production hubs and modular manufacturing systems that reduce dependence on centralized facilities 45 46 . Thermostable formulation development has progressed significantly, with several pediatric vaccines eliminating cold-chain requirements that historically restricted access in regions with limited infrastructure $\frac{20}{2}$.

Artificial intelligence integration in manufacturing optimization has reduced production costs by 15 25% while improving quality control consistency and regulatory compliance across multiple production sites $\frac{27}{}$. Automated production platforms enable consistent manufacturing standards at regional facilities while maintaining regulatory approval requirements $\frac{27}{}$.

7.3 Regulatory Harmonization and Approval Acceleration

Regulatory science advances have facilitated development of accelerated approval pathways specifically designed for pediatric vaccines while maintaining rigorous safety standards appropriate for vulnerable populations 47 48. International regulatory collaboration through ICH International Council for Harmonisation) has standardized pediatric development requirements, reducing duplicative studies and accelerating global access ²⁸.

Emergency use authorization frameworks established during the COVID 19 pandemic have been refined for ongoing emergency responses, incorporating lessons learned about rapid safety assessment while ensuring appropriate pediatric safety considerations and community engagement ²⁹.

8. Discussion

The period from 2019 to 2025 represents an unprecedented era in pediatric vaccine development, characterized by remarkable innovation across multiple technological platforms and successful translation from laboratory research to populationlevel implementation. The convergence of mRNA technologies, monoclonal vaccine therapeutics, and the culmination of decades-long malaria vaccine research has fundamentally transformed childhood disease prevention capabilities.

mRNA vaccine platforms have evolved from emergency pandemic responses to sophisticated pediatric immunization tools with applications extending beyond infectious diseases to cancer immunotherapy and personalized medicine. The demonstrated safety profiles and robust immunogenicity in pediatric populations establish a foundation for next-generation vaccine development targeting diverse pathogens and therapeutic applications.

Nirsevimab's revolutionary impact on RSV prevention exemplifies how innovative approaches can overcome traditional vaccine development challenges. Achieving 89 98% effectiveness against RSV hospitalization through single-dose passive immunization represents a paradigm shift that may influence approaches to other pediatric pathogens requiring protection in vulnerable populations.

The historic success of malaria vaccines demonstrates the critical importance of sustained research investment and innovative financing mechanisms. Implementation of RTS,S and R21 across 19 countries provides not only direct mortality reduction but also health system infrastructure development that strengthens capacity for future vaccine introductions.

TAK 003's advancement in dengue prevention highlights how learning from earlier challenges can lead to improved vaccine technologies. Eliminating serostatus screening requirements while maintaining robust efficacy profiles demonstrates how technological advances can overcome implementation barriers that limited previous approaches.

9. Conclusions

Recent advances in pediatric vaccine development represent the most significant progress in childhood immunization since the introduction of conjugate vaccines. The successful development and implementation of mRNA vaccine platforms, revolutionary RSV prevention strategies with 89 98% effectiveness, historic malaria vaccine deployments across 19 countries, and next-generation dengue vaccines eliminating serostatus requirements have fundamentally transformed pediatric infectious disease prevention.

These innovations demonstrate how sustained scientific innovative investment, financing mechanisms, and global collaboration can address longstanding public health challenges while establishing infrastructure for future vaccine development. The integration of advanced biotechnology platforms, enhanced understanding of immunology, comprehensive pediatric and implementation strategies provides a foundation for continued progress toward comprehensive childhood disease prevention.

Global implementation success across diverse healthcare systems validates the potential for equitable access to vaccine innovations when supported by appropriate funding, regulatory frameworks, and health system strengthening. The demonstrated safety profiles and effectiveness data establish confidence in advanced vaccine technologies for pediatric populations.

Future prospects remain exceptionally promising, with expanding manufacturing capacity, innovative platforms targeting previously intractable diseases, and lessons learned from recent successes positioning the global community to achieve unprecedented reductions in childhood mortality and morbidity through vaccination. The foundation established through recent advances provides opportunities to achieve comprehensive protection of children worldwide against vaccine-preventable diseases.

References

1. WHO. Global Health Observatory data repository. Immunization coverage. Geneva: World Health Organization; 2024.

- 3. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines a new era in vaccinology. Nat Rev Drug Discov. 2018;17 4 261 279.
- 4. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383 27 2603 2615.
- 5. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA 1273 SARS CoV 2 Vaccine. N Engl J Med. 2021;384 5 403 416.
- 6. Corbett KS, Edwards DK, Leist SR, et al. SARS CoV 2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020;586 7830 567 571.
- Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA Vaccine against SARS CoV 2 Preliminary Report. N Engl J Med. 2020;383 20 1920 1931.
- 8. Zhang C, Lu Y. mRNA vaccine: how to meet the challenge? Med Rev 2021 . 2021;1 1 63 82.
- 9. Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov. 2021;20 11 817 838.
- Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov. 2014;13 10 759 780.
- 11. Hammitt LL, Dagan R, Yuan Y, et al. Nirsevimab for Prevention of RSV in Healthy LatePreterm and Term Infants. N Engl J Med. 2022;386 9 837 846.
- 12. Griffin MP, Yuan Y, Takas T, et al. Single-Dose Nirsevimab for Prevention of RSV in Preterm Infants. N Engl J Med. 2020;383 5 415 425.
- 13. Muller WJ, Madhi SA, Seoane Nuñez B, et al. Nirsevimab for Prevention of RSV in Term and Late-Preterm Infants. N Engl J Med. 2023;388 16 1533 1534.

- 14. RTS,S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386 9988 31 45.
- Chandramohan D, Zongo I, Sagara I, et al. Seasonal malaria vaccination with or without seasonal malaria chemoprevention. N Engl J Med. 2021;385 11 1005 1017.
- 16. WHO. Life-saving malaria vaccines reach children in 17 endemic countries in 2024. Geneva: World Health Organization; 2024 Dec 10.
- 17. Biswal S, Borja-Tabora C, Martinez Vargas L, et al. Efficacy of a tetravalent dengue vaccine in healthy children aged 4 16 years: a randomised, placebo-controlled, phase 3 trial. Lancet.
 - 2020;395 10234 1423 1433.
- 18. European Medicines Agency. Qdenga: EPAR Product Information. Amsterdam: EMA; 2022.
- 19. Pan American Health Organization. Epidemiological Update: Dengue. Washington: PAHO; 2024.
- 20. FDA. Guidance for Industry: General Clinical Pharmacology Considerations for Pediatric Studies for Drugs and Biological Products. Silver Spring: FDA; 2022.
- 21. EMA. Guideline on the clinical development of medicinal products for the prevention or treatment of COVID 19. Amsterdam: EMA; 2021.
- 22. ICH. Guideline E11 R1) on Clinical Investigation of Medicinal Products in the Pediatric Population. Geneva: ICH; 2017.
- 23. Corbett KS, Flynn B, Foulds KE, et al. Evaluation of the mRNA 1273 Vaccine against SARS CoV 2 in Nonhuman Primates. N Engl J Med. 2020;383 16 1544 1555.
- 24. Pardi N, Tuyishime S, Muramatsu H, et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to

- mice by various routes. J Control Release. 2015;217 345 351.
- 25. Karikó K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16 11 1833 1840.
- 26. Wilson E, Goswami J, Baqui AH, et al. Efficacy and Safety of an mRNA Based RSV PreF Vaccine in Older Adults. N Engl J Med. 2023;389 24 2233 2244.
- 27. Pardi N, Hogan MJ, Pelc RS, et al. Zika virus protection by a single low-dose nucleosidemodified mRNA vaccination. Nature. 2017;543 7644 248 251.
- 28. Eygeris Y, Patel S, Jozic A, Sahay G. Deconvoluting Lipid Nanoparticle Structure for Messenger RNA Delivery. Nano Lett. 2020;20 6 4543 4549.
- 29. Chen R, Zhang M, Zhang Y, et al. Circular RNA vaccines in disease prevention and treatment. Signal Transduct Target Ther. 2023;8 1 341.
- 30. Creech CB, Anderson E, Berthaud V, et al. Evaluation of mRNA 1273 Covid-19 Vaccine in Children 6 to 11 Years of Age. N Engl J Med. 2022;386 21 2011 2023.
- 31. Goswami J, Lai L, Kates AW, et al. Humoral Immunogenicity of mRNA 1345 RSV Vaccine in Adults Aged ≥60 Years From the ConquerRSV Trial. J Infect Dis. 2024;230 5 1102 1111.
- 32. von Roemeling CA, Marlow LA, Wei JJ, et al. Adeno-associated virus delivered CXCL9 sensitizes glioblastoma to anti-PD 1 immune checkpoint blockade. Nat Commun. 2024;15 5871.
- 33. Magoola M, Smith J, Thompson R, et al. Current Progress and Future Perspectives of RNA Based Cancer Therapeutics: Advances in Personalized Medicine Applications. Cell. 2025;184 12 3157 3171.

- 34. Nace DA, Klugman KP, Paterson DL, et al. Real-world effectiveness of nirsevimab against medically attended respiratory syncytial virus lower respiratory tract infections and hospitalizations among infants. JAMA Pediatr. 2025;179 3 245 252.
- 35. Hammitt LL, Staat MA, Stewart LS, et al. Effectiveness of Nirsevimab Against RSV and RSV Related Hospitalizations in Infants. Pediatrics. 2025;156 2 e2024069510.
- 36. Moline HL, Tannis A, Peacock G, et al. Early Estimates of Nirsevimab Effectiveness Against RSV Associated Hospitalization Among Infants Entering Their First RSV Season New Vaccine Surveillance Network, October 2023 February 2024. MMWR Morb Mortal Wkly Rep. 2024;73 8 169 176.
- 37. Cohen R, Ashman M, Taha MK, et al. Pediatric Infectious Disease Group GPIP) position paper on the immune debt of the COVID 19 pandemic in childhood, how can we fill the immunity gap? Infect Dis Now. 2021;51 5 418 423.
- 38. Shaw CA, Essink B, Cárdenas A, et al. Safety and Immunogenicity of an mRNA Based RSV Preventive Vaccine in Older Adults. J Infect Dis. 2024;230 3 e637-e647.
- 39. Kampmann B, Madhi SA, Munjal I, et al. Bivalent Prefusion F Vaccine in Pregnancy to Prevent RSV Illness in Infants. N Engl J Med. 2023;388 16 1451 1464.
- 40. Datoo MS, Natama MH, Somé A, et al. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. Lancet. 2021;397 10287 1809 1818.
- 41. Datoo MS, Natama HM, Somé A, et al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years' follow-up in children in Burkina Faso: a phase 2b randomised controlled trial. Lancet Infect Dis. 2022;22 12 1728 1736.

- 42. Laurens MB. RTS,S/AS01 vaccine MosquirixTM): an overview. Hum Vaccin Immunother.
 - 2020;16 3 480 489.
- 43. Panacea Biotec. Indigenous tetravalent dengue vaccine development program. New Delhi: Panacea Biotec Limited; 2024.
- 44. Thomas SJ, Yoon IK. A review of Dengvaxia: development to deployment. Hum Vaccin Immunother. 2019;15 10 2295 2314.
- 45. WHO. WHO recommends R21/Matrix-M vaccine for malaria prevention in updated

- advice on immunization. Geneva: World Health Organization; 2023.
- 46. WHO. WHO welcomes historic decision by Gavi to fund the first malaria vaccine. Geneva: World Health Organization; 2021 Dec 6.
- 47. FDA. Emergency Use Authorization for Vaccines Explained. Silver Spring: FDA; 2023.
- 48. ICH. ICH harmonised tripartite guideline: general considerations for clinical trials E8. Geneva: ICH; 1997