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Abstract: 

Cigarette smoking has been proven to be a significant risk factor for pathological changes associated with aging 

and Alzheimer's disease (AD). It is the primary cause of cognitive impairment worldwide and is classed as a 

neurological condition. AD is characterized by the extracellular aggregation of amyloid (Aβ) plaques and the 

intracellular development of neurofibrillary tangles in the cortical and marginal areas of the human brain. 

Individuals with AD will have memory loss in addition to growing neurocognitive impairment. To determine if 

smoking can have an influence on the development of AD, the effects of smoking on the brain must be 

examined. Several researchers have already examined the decline in cigarette smoking and recognized it as a 

significant risk factor for AD. On the other hand, additional study has established that there is no correlation 

between cigarette smoking and the development of AD. Inconsistencies in the variables and experimental 

techniques were discovered in several of these investigations. For example, the kind of AD detected in 

individuals varied: whereas one trial demonstrated the development of late-onset AD, another experiment 

indicated non-late-onset AD. As a result, additional experiments with more precise control of variables and 

consistent techniques are required. This review aims to investigate the pathological alterations that smoking 

causes in the human brain, with a particular emphasis on findings indicating that late-onset AD is a result of 

cigarette smoking. Additionally, this study aimed to elucidate the several processes through which smoking may 

raise the risk of AD. 
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Introduction 

It has been established that smoking contributes to 

the development of neurological illnesses, such as 

Alzheimer's disease (AD) and dementia (1, 2). In 

addition, it has been linked to both an increased and a 

decreased risk of AD (1). According to one study, 

late-onset AD (beginning beyond the age of 65) 

accounts for more than 90% of all AD cases. 

Additionally, it is predicted that roughly 35 million 

individuals globally suffer with AD, a figure that is 

expected to almost quadruple by 2030 as the 

conditions of human lifestyle improve (3, 4). 

Cigarette smoking may increase amyloid pathology, 

according to the findings of an animal model of AD 

(5). Other research has indicated that detecting 

amyloid-beta 42 levels in cerebrospinal fluid (CSF) 

may give diagnostic specificity for AD, with human 

studies indicating a clear relationship between 

elevated CSF amyloid-beta 42 levels and moderate 

cognitive impairment associated with AD (6). It will 

be the emphasis of this review to examine the 

evidence that smoking can cause late-onset AD, as 

well as a complete examination of the several 

processes by which smoking may cause the disease. 

Aβ plaques and AD: 

Aβ plaques begin in the basal, temporal, and 

orbitofrontal neocortex areas of the brain before 

spreading to the hippocampus, amygdala, 

diencephalon, and basal ganglia (7, 8). Amyloid 
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pathogenesis begins with a shift in the breakdown of 

APP, an integral protein on the plasma membrane, by 

β-secretases (BACE1) and γ-secretases, resulting in 

insoluble Aβ fibrils (9, 10). A then oligomerizes, 

diffuses into synaptic clefts, and degrades synaptic 

connections (9). It polymerizes as a result, creating 

plaques of insoluble amyloid fibrils (11-13). As a 

result of this polymerization, kinases are activated, 

resulting in hyperphosphorylation of the microtubule-

associated protein and subsequent polymerization 

into insoluble NFTs (14, 15). Microglia are recruited 

to surround plaques and tangles that form as a result 

of the formation of plaques and tangles (8, 14, 16). 

This stimulates microglia and triggers a local 

inflammatory response, both of which result in 

neurotoxicity (15, 17). 

APP proteins in AD: 

APP is a member of a protein family that also 

includes mammalian amyloid precursor-like proteins, 

which are APLP1 and APLP2, as well as Drosophila 

Amyloid antecedent protein-like proteins, or APPL 

(6, 13, 18). It is a transmembrane protein containing 

extracellular domains that are required for optimal 

cell membrane function (19, 20). By differential 

enzyme cleavage, APP forms amyloidogenic 

fragments in a sick state (21). While the 

physiological activities of APP are unknown at the 

time, scientists have discovered that it is capable of 

controlling growth and motility of cells (16, 22, 23). 

All of this is linked to the release of soluble 

ectodomains after proper APP cleavage in transiently 

transfected cell lines (13, 19). 

Cigarette smoking and brain aging: 

Tobacco use has been found as a significant risk 

factor for age-related pathological changes and AD 

(2, 24). Because smoking can affect other cellular 

functions, such as the motor-based trafficking 

system, we measured the levels of acetylated-tubulin 

in the blood, which can reduce kinesin-1 binding 

affinity (25). According to one study, smokers 

exhibited lower acetylated tubulin levels (26-28). 

Acetylated-tubulin immunoreactivity was 

considerably reduced in the CA1 and CA3 sections of 

the hippocampus in the smoking group (29-31). 

Following a quantitative study of Western blot data, 

researchers discovered that the smoking group's level 

of acetylated tubulin was only 0.59±0.03 times higher 

than that of the control group (32). This change inβ -

tubulin acetylation levels might indicate a faulty 

cellular transport mechanism. Because acetylated 

tubulin levels varied, smoking could have additional 

effects on the transport system within cells (27). It 

has been demonstrated that the degree of 

phosphorylation affects tau's affinity for microtubules 

(MTs) and, as a result, the integrity of the 

cytoskeleton (33). Additionally, it was discovered by 

the presence of tau phosphorylation sites found in 

many of the mouse hippocampus (29, 34). Smoking 

had no influence on overall tau levels, as determined 

by Western blots using a pan-tau (K9JA) antibody 

(35, 36). Western blots were utilized to detect tau 

phosphorylation at the four phosphorylation sites 

using phosphorylation-dependent and site-specific 

tau antibodies (17). Furthermore, smoking increased 

tau phosphorylation by approximately 3 folds at 

Tyr231, Tyr205, and Ser404 (25, 37, 38). The data, 

however, reveal that there is no statistically 

significant difference in the levels of phosphorylated 

tau at Ser396 between those who smoke and those 

who do not (17). 

Role of cigarette smoking and risk of AD: 

Numerous variables contribute to the development of 

AD, but the most powerful and often duplicated risk 

factors are age and the APOE 4 allele, which is 

handed down from generation to generation (39). 

Between the ages of 60 and 90, the chance of 

developing AD increases by 50% every five years, 

and the risk increases by 3–5 times for those with one 

copy of the APOE 4 allele, and by a whopping 12 

times for individuals with two copies (i.e., 

homozygotes for the APOE 4 allele) (40, 41). When 

paired with other genetic and changeable 

environmental risk factors, age and APOE genotype 

may exacerbate the pathophysiology and risk of AD 

(39, 42). Numerous studies have been undertaken in 

recent years to discover risk factors for AD that may 

be adjusted or treated in order to decrease their 

frequency during the asymptomatic preclinical 

period, resulting in a considerable reduction in the 

number of people with the condition (40, 43). There 

is, however, considerable dispute over the strength of 

the association between AD and suspected risk 

factors for the illness that can be modified (7). 

APP processing was altered by passive cigarette 

smoking: 
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AD is associated with an increase in tau 

phosphorylation and synaptic activity (26). As a 

result, more degenerative alterations associated with 

AD were identified in the test subjects (37). The 

researchers observed that APP levels had grown but 

that its expression had remained the same (44). 

Throughout AD, both β-secretase and γ -secretase 

alter the enzymatic cleavage of APP, resulting in 

increased synthesis of sAPP and, finally, Aβ peptide 

(13, 19, 45). Test rats who smoked cigarettes had 

higher amounts of the neurotransmitter sAPP in their 

hippocampus than those that did not (17, 46). The 

smoking group conveyed considerably greater levels 

of Aβ, particularly in the CA3 area (29, 31). The 

control group had little to no Aβ staining in CA3, but 

the smoking group had Aβ accumulating in the cell 

body (8, 29). Despite the fact that the control group 

had a greater baseline level of Aβ in the dentate gyrus 

than the smoking group, the smoking group 

experienced an increase in Aβ staining (47). Tobacco 

use appears to alter the process of APP and redirect it 

to the amyloidogenic pathway, resulting in an 

increase in Aβ peptide synthesis. 

Oxidative stress a major mechanism for cigarette 

smoke in neurodegenerative effects: 

Tobacco smokers had significantly greater levels of 

oxidative stress indicators and significantly lower 

amounts of antioxidants, anti-oxidative enzymes, or 

both (48, 49). The term "systemic oxidative stress" 

refers to the way cigarette smoke affects various 

organs (50). A previous study found that both 

smokers and AD patients have elevated free radical 

damage levels in their cerebral cortex (49, 51). 

Additionally, another recent research established the 

effect of oxidative stress by demonstrating that 

Vitamin E can protect against the rise in 

acetylcholinesterase activity and lipid peroxidation 

caused by cigarette smoke in rat brains (52). Using a 

paradigm, the researchers demonstrated the presence 

of oxidative stress in the hippocampus of cigarette-

exposed rats (52). Antibodies specific for 8-hydroxy-

2′-deoxyguanosine (8-OHdG) and 8-

hydroxyguanosine (8-OHg) were used to assess the 

presence of oxidative stress (8-OHG) (53, 54). When 

reactive free radicals oxidize guanine in DNA and 

RNA, 8-OHdG and 8-OHG are formed (53, 54). 8-

OHG and 8-OhdG levels in susceptible neurons of 

AD patients are raised, and the amount of eight-OHG 

in their CSF is significantly connected with disease 

duration (53, 54). Early in the course of 

neurodegenerative disorders, synaptic degradation 

occurs (53, 54). Synaptic loss, on the other hand, has 

been seen in both healthy persons and AD patients 

(55). These proteins are required for appropriate 

synaptic function (55, 56). Synaptophysin, the most 

abundant protein in synaptic vesicles, is used to 

specify the amount of functional synapses (25). 

Synaptophysin works in conjunction with other 

synaptic proteins, most notably synaptobrevin, to 

regulate synaptic vesicle exocytosis and hence 

neurotransmitter release (55). Another presynaptic 

protein that is involved in the control of 

neurotransmitter release is known as Synapsin-1 (9). 

Synapsin-1 modulates synaptic vesicle release by 

modulating its phosphorylation state (57). Cigarette 

smoking lowered the expression of two synaptic 

degeneration markers, synapsin-1 and synaptophysin 

(24, 58, 59). Additionally, drebrin, a protein found in 

dendritic spines, is becoming more abundant. Actin 

filaments comprise the dendritic spine's basic 

cytoskeletal structure (33). Drebrin binds to actin and 

interferes with its interaction with myosin, resulting 

in diminished actomyosin contractile force and spine 

retraction (51). It has been proven that drebrin 

overexpression alters the spine's morphology, and an 

increase in drebrin expression may interfere with 

normal synaptic activity due to the intimate 

relationship between spine shape and synaptic 

plasticity (60). Drebrin expression is changed in 

persons with AD and moderate cognitive impairment 

(47, 60). Drebrin expression was increased in 

cognitively impaired elderly rats, but not in elderly 

rats with normal cognition, according to the study 

(60). More drebrin is thought to hinder the 

remodeling of spine structure that happens during 

periods of high activity (60). This may result in a 

tightening of the synapses' structure, rendering them 

less malleable (33). Thus, synaptophysin, synapsin-1, 

and drebrin findings indicate that chronic cigarette 

smoking results in synaptic alterations linked with 

aging and cognitive decline (2, 61). 

The most prevalent element of MTs is tubulin (27). 

Acetylation of β-tubulin is required for axonal transit, 

as demonstrated on stable MTs (27). If β-tubulin is 

acetylated, the cargo-transporting motor protein 

Kinesin-1 will be able to associate with MTs (25-27). 

In AD patients, acetylated-tubulin levels are lower in 

neurons with neurofibrillary tangles (28). Cigarette 
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smokers possessed around 40% less acetylated 

tubulin than nonsmokers, implying axonal transport 

impairment (61). To validate this argument, a more 

functional research may be necessary (62). Reduced 

acetylated-tubulin levels may suggest fewer stable or 

mature MTs, as well as alterations in the cell's 

transportation system (61). Tau is a membrane-

associated protein that is necessary for vesicle 

formation, stability, and trafficking (24, 61). Due to 

the reduced affinity of hyperphosphorylated tau 

proteins for MTs, they are more prone to form 

paired-helical filament structures and aggregate to 

form neurofibrillary tangles (63). As a result, 

Cigarette smoke exposure resulted in 

hyperphosphorylation of tau at Thr 231, Thr 205, and 

Ser 404, respectively (26, 61). Thus, tau's usual 

activities may be compromised, resulting in a drop in 

acetylated-tubulin, implying a loss of microtubule 

integrity (61). 

Nicotine administration to transgenic AD mice on a 

regular basis has been shown to exacerbate tau 

pathology (64, 65). Tau phosphorylation is regulated 

by GSK3, CDK5, ERK1/2, JNK, and PP2A kinases 

and phosphatases (15, 65). It was revealed that p-

ERK1/2 and p-JNK levels were increased in the 

hippocampuses of smokers (24, 57, 62). Numerous 

components of tobacco smoke are highly reactive 

oxidants (66). For example, nicotine has been 

demonstrated to generate reactive oxygen species in 

mesencephalic neurons of rats (ROS) (20, 67). 

Because the smoking group had a greater 

concentration of 8-OHG during the experiment, 

oxidative stress may have acted as a catalyst for JNK 

and ERK, both of which phosphorylated tau proteins 

(68). By altering APP processing, oxidative stress can 

contribute to the pathogenesis of AD. It has been 

demonstrated in vitro that it can alter β- and y-

secretases and increase Aβ production via a JNK-

dependent mechanism (49, 66). According to current 

research, Aβ's immunoreactivity is increased in 

smokers' brain slices (69). Toxicology plays an 

important part in the course of AD; the peptide has 

the potential to cause synapses to deteriorate and 

axonal transport to be disrupted (69). Cigarette 

smoking-induced Aβ is almost certainly responsible 

for a portion of the observed reduction in acetylated 

tubulin and synaptic alterations (24). 

Cognitive and neurodegenerative impact from 

cigarette smoking: 

The researchers discovered evidence that smoking 

has a detrimental effect on the neurobiology and 

function of the brain in people who have no history 

of clinically significant psychiatric or medical 

conditions, such as schizophrenia or 

alcohol/substance use disorders, as well as those who 

have a history of mild traumatic brain injury (70). 

These findings are particularly significant for 

smokers, as the neurobiological and cognitive 

abnormalities observed in these individuals closely 

resemble many of the neuropathological and 

cognitive abnormalities observed in the recently 

suggested "preclinical" phases of AD (2). The 

majority of the research is devoted to the 

consequences of smoking on the human body in 

those over the age of 65 (54). Apart from 

cerebrovascular risk factors for stroke, little study has 

been conducted on the long-term effects of smoking 

on the brain and its functioning, particularly in 

middle-age people and young adults (61, 71). 

Smoking and Cognitive Impairment Among 

Persons: 

Previous study has demonstrated that former smokers 

and nonsmokers exhibit no significant difference in 

cognitive ability (72). On the other hand, some 

studies have established a link between smoking and 

cognitive ability, demonstrating that former smokers 

outperform nonsmokers (73). After correcting for 

factors such as age, education, diabetes, 

hypertension, stroke, and heart disease, a prospective 

research of older Taiwanese respondents discovered 

that former smokers had a lower rate of cognitive 

impairment than nonsmokers (73). On the other hand, 

some research have found that ex-smokers are more 

likely to experience cognitive impairment (65). 

Although the exact mechanisms by which smoking 

causes dementia are unknown, it is thought that 

smoking has an influence on the cardiovascular 

system and oxidative stress, both of which can raise 

the risk of developing AD (72). Smoking increases 

the risk of hypertension by causing damage to the 

cardiovascular system, implying that smoking is yet 

another risk factor for hypertension (24, 73, 74). 

According to cerebrovascular pathology and AD 

pathology, hypertension is associated with an 

elevated risk of AD and dementia (75, 76). 

Another possible explanation for smoking's 

detrimental effect on cognitive function is oxidative 
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stresss (66). Tobacco use promotes oxidative stress, 

which causes blood vessel cells to die, arteries to 

shrink, and cerebral blood flow to decrease. As a 

result, reduced cerebral perfusion may result in 

cognitive impairment (24). New research suggests 

that oxidative stress can contribute to the genesis and 

development of AD (24). A second mechanism 

through which smoking may impair cognitive 

function is through lifestyle factors (66). Cigarette 

smoking has been linked to increased alcohol use, an 

increased BMI, and a lack of physical activity, all of 

which are risk factors for cognitive impairment (63, 

72). Nonphysiological variables may contribute to the 

association between cigarette smoking and cognitive 

decline (66). According to population-based research, 

the relationship between socioeconomic status (SES) 

and smoking practices is inverse, with individuals 

with lower SES being more likely to become smokers 

(77). Numerous studies have established that 

socioeconomic variables contributed to the 

development of AD (77, 78). As a result, the link 

between smoking and poor socioeconomic position 

may help explain why smokers are more likely to 

experience cognitive impairment (77). By contrast, 

nicotine has been associated with possible biological 

anti-dementia properties (77). Nicotine has been 

shown to improve short-term cognitive performance 

and decrease amyloid plaque formation (66). It 

stimulates cognitive and memory-related brain 

receptors (66). Another factor affecting the link 

between cigarette smoking and cognitive decline is 

that smokers die younger than nonsmokers, resulting 

in a survivorship bias (72). As a result, only a tiny 

percentage of smokers reach the ages at which 

dementia symptoms frequently develop (43, 79). As a 

consequence, lower dementia rates among smokers 

may be attributable to factors other than smoking's 

protective properties, and smokers' death may be due 

to causes other than dementia (1, 79). A recent study 

examined whether the association between smoking 

and cognition is exacerbated by smokers' early death 

(80). After adjusting for criteria such as smoking 

history, socioeconomic position, and marital status, 

they revealed that men and women who were current 

smokers died at a greater rate than those who had 

never smoked (73, 77). On the other hand, a research 

analysis discovered contradictory conclusions about 

the effects of smoking and the chance of developing 

AD (80). Despite the fact that pharmacological 

studies support a plausible biological mechanism, this 

investigation found no evidence to support prior 

epidemiological results regarding smoking's 

protective effect against AD (79, 80). 

Conclusion : 

Cigarette smoking is a well-documented cause of 

premature aging. Use of tobacco reduces life 

expectancy and raises the chance of heart disease, 

cancer, and respiratory issues, among other health 

problems. While both smokers and non-smokers 

exposed to cigarette smoke have been linked to AD, 

the chemical mechanism behind this phenomenon is 

still unclear. Numerous studies have demonstrated 

that continuous smoking can accelerate brain aging 

by altering the synaptic proteins, which results in pre-

AD neuropathology. Therefore, the consequence of 

smoking on distinct types of AD must be further 

researched; finding apolipoprotein E and other 

suspected genetic markers for AD will assist in 

characterizing the condition and its interplay with 

environmental variables such as smoking. This 

research may contribute to the theoretical 

underpinnings of a cure. 
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